What's ours is yours: Recall of history of lesser known countries is guided by your own nation's history
- Award ID(s):
- 1827182
- PAR ID:
- 10162041
- Date Published:
- Journal Name:
- Memory
- Volume:
- 27
- Issue:
- 4
- ISSN:
- 0965-8211
- Page Range / eLocation ID:
- 480-494
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels.more » « less
-
The question of what mechanisms maintain tropical biodiversity is a critical frontier in ecology, intensified by the heightened risk of biodiversity loss faced in tropical regions. Ecological theory has shed light on multiple mechanisms that could lead to the high levels of biodiversity in tropical forests. But variation in species abundances over time may be just as important as overall biodiversity, with a more immediate connection to the risk of extirpation and biodiversity loss. Despite the urgency, our understanding of the primary mechanisms driving fluctuations in species abundances has not been clearly established. Here, we introduce a theoretical framework based around life history; the schedule of birth, growth, and mortality over a lifespan, and its systematic variation across species. We develop a mean field model to predict expected fluctuations in abundance for a focal species in a larger community, and we quantify empirical life history variation among 90 tropical forest species in a 50 ha plot in Panama. Putting theory and data together, we show that life history provides a critical piece of this puzzle, allowing us to explain patterns of abundance fluctuations more accurately than previous models incorporating demographic stochasticity without life history variation, and without introducing unobserved couplings between species and their environment. This framework provides a starting point for more general models that incorporate multiple factors in addition to life history variation, and suggests the potential for a fine-grained assessment of extirpation risk based on the impacts of anthropogenic change on demographic rates across life stages.more » « less
An official website of the United States government

