Online learning is increasing in both enrollment and importance within engineering education. Online courses also continue to confront comparatively higher course dropout levels than face-to-face courses. This research paper thus aims to better understand the factors that contribute to students’ choices to remain in or drop out of their online undergraduate engineering courses. Path analysis was used to examine the impact of course perceptions and individual characteristics on students’ course-level persistence intentions. Specifically, whether students' course perceptions influenced their persistence intentions directly or indirectly, through their expectancies of course success, was tested. Data for this study were collected from three ABET-accredited online undergraduate engineering programs at a large public university in the Southwestern United States: electrical engineering, engineering management, and software engineering. A total of 138 students participated in the study during the fall 2019 (n=85) and spring 2020 (n=53) semesters. Participants responded to surveys twice weekly during their 7.5-week online course. The survey asked students about their course perceptions related to instructor practices, peer support, and course difficulty level, their expectancies in completing the course, and their course persistence intentions. This work is part of a larger National Science Foundation-funded research project dedicated to studying online student course-level persistence based on both students' self-report data and course learning management system (LMS) activity. The survey sample was consistent with reports indicating that online learners tend to be more diverse than face-to-face learners. Findings from the path analysis revealed that students' perceptions of course LMS fit, perceived course difficulty, and expectancies of course success positively and significantly predicted persistence intentions, making them the most important influences. Expectancies of course success had a direct effect on persistence intentions. The findings underscore the need to elucidate further the mechanisms through which expectancies of success influence persistence. 
                        more » 
                        « less   
                    
                            
                            Hydrothermal Synthesis and Characterization of Titanosilicate ETS-10: Preparation for Research Integrated Inorganic Chemistry Laboratory Course
                        
                    
    
            Hydrothermal synthesis and characterization of titanosilicate ETS-10 was used as a means to prepare students for a research-focused independent term project as part of a 200-level descriptive inorganic chemistry course. Students spent the first 7 weeks of the course learning synthesis and characterization techniques that are common for metal oxide systems. In the second half of the semester, students led their own independent term projects as part of this research integrated laboratory course. All students successfully synthesized their materials and characterized their products independently. At the completion of the course, students submitted a journal-style report as well as presented their findings at a department poster session. The students were assessed through Student Assessment of their Learning Gains (SALG) surveys which showed enhancement in understanding and all-around research skills. The feasibility of learning advanced instrumentation that is not typically used in an undergraduate lab setting was demonstrated through this course. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1852150
- PAR ID:
- 10162287
- Date Published:
- Journal Name:
- Journal of chemical education
- Volume:
- 97
- Issue:
- 6
- ISSN:
- 1050-4281
- Page Range / eLocation ID:
- 1588-1594
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course.more » « less
- 
            The addition of research-focused experiences to undergraduate chemistry laboratory courses has been shown to bolster student learning, enhance student retention in STEM, and improve student self-identity as scientists. In the area of synthetic organic chemistry, the preparation of libraries of compounds with novel optical and electronic properties can provide a natural motivational goal for research-focused exercises that can be undertaken by individual students or collectively as a class. However, integrating such experiences into a community college teaching laboratory setting can face challenges imposed by the cost of supplies, limited laboratory space, and access to characterization facilities. To address these challenges, we have devised a sequence of inquiry-driven, research-focused laboratory exercises that can be readily integrated into an organic chemistry laboratory course with minimal cost. This sequence consists of a multistep synthesis of perylenediimide dyes that introduces students to advanced synthetic techniques, such as organometallic coupling reactions, column purification, and reactions performed under inert atmosphere. This high-yield, three-part synthesis can be easily varied by individual students or small groups within a class to form a broad library of compounds with potential utility for applications in light harvesting, molecular electronics, catalysis, and medicine. We describe the design of low-cost workstations for chemical synthesis under inert atmosphere and provide auxiliary lesson plans that can be used to expand the scope of a laboratory course beyond synthetic organic chemistry by introducing students to concepts in molecular spectroscopy.more » « less
- 
            null (Ed.)This full research-track paper demonstrates growth in computational thinking in a cohort of engineering students completing their first course in engineering at a large Southwestern university in the United States. Computational thinking has been acknowledged as a key aspect of engineering education and an intrinsic part of multiple ABET outcomes. However, computing is an area where some students have more privileges (e.g. access and exposure to meaningful use of computers) than others. Integrating computing into engineering, especially early in the curriculum, may exacerbate existing experiential disadvantages students from excluded social identities experience. Most introductory engineering programs have a component of programming and/or computational thinking. A comprehensive literature review showed that no existing computational thinking framework fully met the needs of students and professors in engineering and computer science. As a result, this team created the Engineering Computational Thinking Diagnostic (ECTD). This diagnostic was assessed and improved during the 2019-2020 academic year. Data was collected from a cohort in a first-year engineering course that included topics in mathematics, engineering problem solving, and computation. Pre- and post-test data analysis with 62 participants documents statistically significant student growth in computational thinking in this course. Significant differences were not found by gender or a limited racially-based analysis. This diagnostic is of interest and relevance to all institutions providing engineering and computing programs. The short-term impact of this research includes an innovative approach to gauge student abilities in computational thinking early in a course in order to add appropriate intervention activities into lesson plans. The long-term impact is the creation of a measurement of student learning of computational thinking in engineering for courses and programs that wish to develop this important skill in their students.more » « less
- 
            In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    