skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial abundance, composition, and function in nectar are shaped by flower visitor identity
ABSTRACT Microbial dispersal is essential for establishment in new habitats, but the role of vector identity is poorly understood in community assembly and function. Here, we compared microbial assembly and function in floral nectar visited by legitimate pollinators (hummingbirds) and nectar robbers (carpenter bees). We assessed effects of visitation on the abundance and composition of culturable bacteria and fungi and their taxonomy and function using shotgun metagenomics and nectar chemistry. We also compared metagenome-assembled genomes (MAGs) of Acinetobacter, a common and highly abundant nectar bacterium, among visitor treatments. Visitation increased microbial abundance, but robbing resulted in 10× higher microbial abundance than pollination. Microbial communities differed among visitor treatments: robbed flowers were characterized by predominant nectar specialists within Acetobacteraceae and Metschnikowiaceae, with a concurrent loss of rare taxa, and these resulting communities harbored genes relating to osmotic stress, saccharide metabolism and specialized transporters. Gene differences were mirrored in function: robbed nectar contained a higher percentage of monosaccharides. Draft genomes of Acinetobacter revealed distinct amino acid and saccharide utilization pathways in strains isolated from robbed versus pollinated flowers. Our results suggest an unrecognized cost of nectar robbing for pollination and distinct effects of visitor type on interactions between plants and pollinators. Overall, these results suggest vector identity is an underappreciated factor structuring microbial community assembly and function.  more » « less
Award ID(s):
1846266 1929516 1929499
PAR ID:
10162419
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
96
Issue:
3
ISSN:
0168-6496
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Plant–microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar‐inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators. We monitored weather and, after 24 h, collected and cultured communities. We found a strong signature of plant species on resulting microbial abundance and community composition, in part explained by plant phylogeny and nectar peroxide content, but not floral morphology. Increasing temperature reduced microbial diversity, while higher minimum temperatures increased growth, suggesting complex ecological effects of temperature. Consistent nectar microbial communities within plant species could enable plant or pollinator adaptation. Our work supports the roles of host identity, traits and temperature in microbial community assembly, and indicates diversity–productivity relationships within host‐associated microbiomes. 
    more » « less
  2. Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus ) aurantiacus , exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris , the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii , the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris -induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization. 
    more » « less
  3. Abstract Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species‐poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non‐sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co‐culture across a subset of treatments. We found that some compounds such as H2O2suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeastMetschnikowia reukaufiiwas unaffected by most nectar compounds assayed. However, many non‐nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe‐specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non‐sugar compounds can affect microbial community assembly in flowers. 
    more » « less
  4. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success. 
    more » « less
  5. Summary Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal‐mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.We compared the effects of host‐plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars ofEpilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important. 
    more » « less