skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VoteNet+: An Improved Deep Learning Label Fusion Method for Multi-Atlas Segmentation
In this work, we improve the performance of multi-atlas segmentation (MAS) by integrating the recently proposed VoteNet model with the joint label fusion (JLF) approach. Specifically, we first illustrate that using a deep convolutional neural network to predict atlas probabilities can better distinguish correct atlas labels from incorrect ones than relying on image intensity difference as is typical in JLF. Motivated by this finding, we propose VoteNet+, an improved deep network to locally predict the probability of an atlas label to differ from the label of the target image. Furthermore, we show that JLF is more suitable for the VoteNet framework as a label fusion method than plurality voting. Lastly, we use Platt scaling to calibrate the probabilities of our new model. Results on LPBA40 3D MR brain images show that our proposed method can achieve better performance than VoteNet.  more » « less
Award ID(s):
1711776
PAR ID:
10162551
Author(s) / Creator(s):
Date Published:
Journal Name:
International Symposium on Biomedical Imaging
Page Range / eLocation ID:
363-367
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For semantic segmentation, label probabilities are often uncalibrated as they are typically only the by-product of a segmentation task. Intersection over Union (IoU) and Dice score are often used as criteria for segmentation success, while metrics related to label probabilities are not often explored. However, probability calibration approaches have been studied, which match probability outputs with experimentally observed errors. These approaches mainly focus on classification tasks, but not on semantic segmentation. Thus, we propose a learning-based calibration method that focuses on multi-label semantic segmentation. Specifically, we adopt a convolutional neural network to predict local temperature values for probability calibration. One advantage of our approach is that it does not change prediction accuracy, hence allowing for calibration as a postprocessing step. Experiments on the COCO, CamVid, and LPBA40 datasets demonstrate improved calibration performance for a range of different metrics. We also demonstrate the good performance of our method for multi-atlas brain segmentation from magnetic resonance images. 
    more » « less
  2. Multi-atlas segmentation (MAS) is a popular image segmentation technique for medical images. In this work, we improve the performance of MAS by correcting registration errors before label fusion. Specifically, we use a volumetric displacement field to refine registrations based on image anatomical appearance and predicted labels. We show the influence of the initial spatial alignment as well as the beneficial effect of using label information for MAS performance. Experiments demonstrate that the proposed refinement approach improves MAS performance on a 3D magnetic resonance dataset of the knee. 
    more » « less
  3. Abstract We consider semantic image segmentation. Our method is inspired by Bayesian deep learning which improves image segmentation accuracy by modeling the uncertainty of the network output. In contrast to uncertainty, our method directly learns to predict the erroneous pixels of a segmentation network, which is modeled as a binary classification problem. It can speed up training comparing to the Monte Carlo integration often used in Bayesian deep learning. It also allows us to train a branch to correct the labels of erroneous pixels. Our method consists of three stages: (i) predict pixel-wise error probability of the initial result, (ii) redetermine new labels for pixels with high error probability, and (iii) fuse the initial result and the redetermined result with respect to the error probability. We formulate the error-pixel prediction problem as a classification task and employ an error-prediction branch in the network to predict pixel-wise error probabilities. We also introduce a detail branch to focus the training process on the erroneous pixels. We have experimentally validated our method on the Cityscapes and ADE20K datasets. Our model can be easily added to various advanced segmentation networks to improve their performance. Taking DeepLabv3+ as an example, our network can achieve 82.88% of mIoU on Cityscapes testing dataset and 45.73% on ADE20K validation dataset, improving corresponding DeepLabv3+ results by 0.74% and 0.13% respectively. 
    more » « less
  4. We present a method to separate a single image captured under two illuminants, with different spectra, into the two images corresponding to the appearance of the scene under each individual illuminant. We do this by training a deep neural network to predict the per-pixel reflectance chromaticity of the scene, which we use in conjunction with a previous flash/no-flash image-based separation algorithm to produce the final two output images. We design our reflectance chromaticity network and loss functions by incorporating intuitions from the physics of image formation. We show that this leads to significantly better performance than other single image techniques and even approaches the quality of the two image separation method. 
    more » « less
  5. This article presents a semisupervised multilabel fully convolutional network (FCN) for hierarchical object parsing of images. We consider each object part (e.g., eye and head) as a class label and learn to assign every image pixel to multiple coherent part labels. Different from previous methods that consider part labels as independent classes, our method explicitly models the internal relationships between object parts, e.g., that a pixel highly scored for eyes should be highly scored for heads as well. Such relationships directly reflect the structure of the semantic space and thus should be respected while learning the deep representation. We achieve this objective by introducing a multilabel softmax loss function over both labeled and unlabeled images and regularizing it with two pairwise ranking constraints. The first constraint is based on a manifold assumption that image pixels being visually and spatially close to each other should be collaboratively classified as the same part label. The other constraint is used to enforce that no pixel receives significant scores from more than one label that are semantically conflicting with each other. The proposed loss function is differentiable with respect to network parameters and hence can be optimized by standard stochastic gradient methods. We evaluate the proposed method on two public image data sets for hierarchical object parsing and compare it with the alternative parsing methods. Extensive comparisons showed that our method can achieve state-of-the-art performance while using 50% less labeled training samples than the alternatives. 
    more » « less