skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computer-assisted beat-pattern analysis and the flagellar waveforms of bovine spermatozoa
Obstructed by hurdles in information extraction, handling and processing, computer-assisted sperm analysis systems have typically not considered in detail the complex flagellar waveforms of spermatozoa, despite their defining role in cell motility. Recent developments in imaging techniques and data processing have produced significantly improved methods of waveform digitization. Here, we use these improvements to demonstrate that near-complete flagellar capture is realizable on the scale of hundreds of cells, and, further, that meaningful statistical comparisons of flagellar waveforms may be readily performed with widely available tools. Representing the advent of high-fidelity computer-assisted beat-pattern analysis, we show how such a statistical approach can distinguish between samples using complex flagellar beating patterns rather than crude summary statistics. Dimensionality-reduction techniques applied to entire samples also reveal qualitatively distinct components of the beat, and a novel data-driven methodology for the generation of representative synthetic waveform data is proposed.  more » « less
Award ID(s):
1665004
PAR ID:
10162552
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
7
Issue:
6
ISSN:
2054-5703
Page Range / eLocation ID:
200769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core‐collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational‐wave background are in the sensitivity band of the ground‐based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high‐dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer‐intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state‐of‐the‐art Bayesian statistical parameter estimation methods will be given for researchers in this cross‐disciplinary area of gravitational wave data analysis. This article is categorized under:Applications of Computational Statistics > Signal and Image Processing and CodingStatistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC)Statistical Models > Time Series Models 
    more » « less
  2. Swimming spermatozoa from diverse organisms often have very similar morphologies, yet different motilities as a result of differences in the flagellar waveforms used for propulsion. The origin of these differences has remained largely unknown. Using high-speed video microscopy and mathematical analysis of flagellar shape dynamics, we quantitatively compare sperm flagellar waveforms from marine invertebrates to humans by means of a novel phylokinematic tree. This new approach revealed that genetically dissimilar sperm can exhibit strikingly similar flagellar waveforms and identifies two dominant flagellar waveforms among the deuterostomes studied here, corresponding to internal and external fertilizers. The phylokinematic tree shows marked discordance from the phylogenetic tree, indicating that physical properties of the fluid environment, more than genetic relatedness, act as an important selective pressure in shaping the evolution of sperm motility. More broadly, this work provides a physical axis to complement morphological and genetic studies to understand evolutionary relationships. 
    more » « less
  3. Abstract In this paper, we introduce a new, open-source software developed in Python for analyzing Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous neural activity generated by the auditory fibers in the ear in response to sound, and used to study acoustic neural information traveling along the ascending auditory pathway. Common ABR data analysis practices are subject to human interpretation and are labor-intensive, requiring manual annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by supporting batch data import/export, waveform visualization, and statistical analysis. Techniques implemented in this software include algorithmic peak finding, threshold estimation, latency estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus frequencies and decibels. The excellent performance on a large dataset of ABR collected from three labs in the field of hearing research that use different experimental recording settings illustrates the efficacy, flexibility, and wide utility of ABRA. 
    more » « less
  4. Separating neural signals from noise can improve brain-computer interface performance and stability. However, most algorithms for separating neural action potentials from noise are not suitable for use in real time and have shown mixed effects on decoding performance. With the goal of removing noise that impedes online decoding, we sought to automate the intuition of human spike-sorters to operate in real time with an easily tunable parameter governing the stringency with which spike waveforms are classified. We trained an artificial neural network with one hidden layer on neural waveforms that were hand-labeled as either spikes or noise. The network output was a likelihood metric for each waveform it classified, and we tuned the network’s stringency by varying the minimum likelihood value for a waveform to be considered a spike. Using the network’s labels to exclude noise waveforms, we decoded remembered target location during a memory-guided saccade task from electrode arrays implanted in prefrontal cortex of rhesus macaque monkeys. The network classified waveforms in real time, and its classifications were qualitatively similar to those of a human spike-sorter. Compared with decoding with threshold crossings, in most sessions we improved decoding performance by removing waveforms with low spike likelihood values. Furthermore, decoding with our network’s classifications became more beneficial as time since array implantation increased. Our classifier serves as a feasible preprocessing step, with little risk of harm, that could be applied to both off-line neural data analyses and online decoding. NEW & NOTEWORTHY Although there are many spike-sorting methods that isolate well-defined single units, these methods typically involve human intervention and have inconsistent effects on decoding. We used human classified neural waveforms as training data to create an artificial neural network that could be tuned to separate spikes from noise that impaired decoding. We found that this network operated in real time and was suitable for both off-line data processing and online decoding. 
    more » « less
  5. Beyond their conventional use of counting and sizing particles, Coulter sensors can be used to spatially track suspended particles, with multiple sensors distributed over a microfluidic chip. Code-multiplexing of Coulter sensors allows such integration to be implemented with simple hardware but requires advanced signal processing to extract multi-dimensional information from the output waveform. In this work, we couple deep learning-based signal analysis with microfluidic code-multiplexed Coulter sensor networks. Specifically, we train convolutional neural networks to analyze Coulter waveforms not only to recognize certain sensor waveform patterns but also to resolve interferences among them. Our technology predicts the size, speed, and location of each detected particle. We show that the algorithm yields a >90% pattern recognition accuracy for distinguishing non-correlated waveform patterns at a processing speed that can potentially enable real-time microfluidic assays. Furthermore, once trained, the algorithm can readily be applied for processing electrical data from other microfluidic devices integrated with the same Coulter sensor network. 
    more » « less