skip to main content


Title: Productive Thinking and Science Learning in Design Teams
Recent reforms in science education have supported the inclusion of engineering in K- 12 curricula. To this end, many science classrooms have incorporated engineering units that include design tasks. Design is an integral part of engineering and helps students think in creative and interdisciplinary ways. In this study, we examined middle-school students’ naturally occurring design conversations in small design teams and their learning of science as a result of engaging in an engineering and science unit. We found that the proportion of different thought processes used by boys and girls was quite similar. Both girls and boys produced a higher percentage of ideas or thoughts associated with divergent thinking, but a lower proportion in convergent thinking, evaluative thinking, and cognitive memory. In addition, gender composition of design teams influenced thought processes expressed by girls and boys. Interestingly, in mixed teams, both girls and boys expressed less divergent thinking than those in single-sex teams. With regard to science content learning, both girls and boys showed statistically significant learning gains. There were no significant gender differences in the pre- and post-test scores. These results suggest that participating in an engineering design task in small design teams provided students opportunities to engage in productive thinking and enhance their learning of the targeted science concept—ecosystems.  more » « less
Award ID(s):
1721141
NSF-PAR ID:
10162577
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Science and Mathematics Education
ISSN:
1571-0068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal stereotypes depict girls as less interested than boys in computer science and engineering. We demonstrate the existence of these stereotypes among children and adolescents from first to 12th grade and their potential negative consequences for girls’ subsequent participation in these fields. Studies 1 and 2 ( n = 2,277; one preregistered) reveal that children as young as age six (first grade) and adolescents across multiple racial/ethnic and gender intersections (Black, Latinx, Asian, and White girls and boys) endorse stereotypes that girls are less interested than boys in computer science and engineering. The more that individual girls endorse gender-interest stereotypes favoring boys in computer science and engineering, the lower their own interest and sense of belonging in these fields. These gender-interest stereotypes are endorsed even more strongly than gender stereotypes about computer science and engineering abilities. Studies 3 and 4 ( n = 172; both preregistered) experimentally demonstrate that 8- to 9-y-old girls are significantly less interested in an activity marked with a gender stereotype (“girls are less interested in this activity than boys”) compared to an activity with no such stereotype (“girls and boys are equally interested in this activity”). Taken together, both ecologically valid real-world studies (Studies 1 and 2) and controlled preregistered laboratory experiments (Studies 3 and 4) reveal that stereotypes that girls are less interested than boys in computer science and engineering emerge early and may contribute to gender disparities. 
    more » « less
  2. Abstract

    This paper describes the design, implementation and research of the Cyber Sleuth Science Lab (CSSL), an innovative educational program and supporting virtual learning environment, that combines pedagogical theory, gender inclusive instruction strategies, scientific principles/practices, gamification methods, computational thinking, and real-world problem solving. This program provides underrepresented youth, especially girls, with digital forensic knowledge, skills and career pathways, challenging them to explore complex social issues related to technology and to become cyber sleuths using real-world digital forensic methods and tools to solve investigative scenarios. Students also learn about related careers while improving their cyber street smarts. The CSSL incorporates additional “outside of the computer” activities to strengthen students’ engagement such as structured in-classroom discussions, mock trials, and in-person interactions with practitioner role models. The CSSL was piloted in various forms to assess the suitability for in-school and out-of-school settings, and the students predominantly represented racial minorities. Research in this project relied on a mixed methods approach for data collection and analysis, including qualitative and quantitative methods, reinforced using learning analytics generated from the students clicking through the interface and interacting with the system. Analysis of gathered data indicate that the virtual learning environment developed in this project is highly effective for teaching digital forensic knowledge, skills, and abilities that are directly applicable in the workplace. Furthermore, the strategies for gender inclusive STEM instruction implemented in CSSL are effective for engaging girls without being harmful to boys’ engagement. Learning STEM through digital forensic science taps into girls’ motivations to address real-world problems that have direct relevance to their lives, and to protect and serve their community. After participating in the educational program, girls expressed a significantly greater increase in interest, relative to boys, in learning more about careers related to digital forensics and cybersecurity.

     
    more » « less
  3. In this work, we examine whether repeated participation in an after-school computing program influenced student learning of computational thinking concepts, practices, and perspectives. We also examine gender differences in learning outcomes. The program was developed through a school–university partnership. Data were collected from 138 students over a 2.5-year period. Data sources included pre–post content assessments of computational concepts related to programming in addition to computational artifacts and interviews with a purposeful sample of 12 participants. Quantitative data were analyzed using statistical methods to identify gains in pre- and post-learning of computational thinking concepts and examine potential gender differences. Interview data were analyzed qualitatively. Results indicated that students made significant gains in their learning of computational thinking concepts and that gains persisted over time. Results also revealed differences in learning of computational thinking concepts among boys and girls both at the beginning and end of the program. Finally, results from student interviews provided insights into the development of computational thinking practices and perspectives over time. Results have implications for the design of after-school computing programs that help broaden participation in computing.

     
    more » « less
  4. Abstract

    Gender stereotypes are harmful for girls’ enrollment and performance in science and mathematics. So far, less is known about children’s and adolescents’ stereotypes regarding technology and engineering. In the current study, participants’ (N = 1,206, girlsn = 623; 5–17-years-old,M = 8.63,SD = 2.81) gender stereotypes for each of the STEM (science, technology, engineering, and mathematics) domains were assessed along with the relation between these stereotypes and a peer selection task in a STEM context. Participants reported beliefs that boys are usually more skilled than are girls in the domains of engineering and technology; however, participants did not report gender differences in ability/performance in science and mathematics. Responses to the stereotype measures in favor of one’s in-group were greater for younger participants than older participants for both boys and girls. Perceptions that boys are usually better than girls at science were related to a greater likelihood of selecting a boy for help with a science question. These findings document the importance of domain specificity, even within STEM, in attempts to measure and challenge gender stereotypes in childhood and adolescence.

     
    more » « less
  5. From kindergarten through college, students perceive boys as more intelligent than girls, yet few sociological studies have identified how school processes shape students’ gender status beliefs. Drawing on 2.5 years of longitudinal ethnography and 196 interviews conducted at a racially diverse, public middle school in Los Angeles, this article demonstrates how educators’ differential regulation of boys’ rule-breaking by course level contributed to gender-based differences in students’ perceptions of intelligence. In higher-level courses—where affluent, White, and Asian American students were overrepresented—educators tolerated 6th-grade boys’ rule-breaking, such that boys challenged girls’ opinions and monopolized classroom conversations. By 8th grade, students perceived higher-level boys as more exceptionally intelligent than girls. However, in lower-level courses—where non-affluent Latinx students were overrepresented—educators penalized 6th-grade boys’ rule-breaking, such that boys disengaged from classroom conversations. By 8th grade, lower-level students perceived girls as smarter than boys, but not exceptional. This article also demonstrates how race intersected with gender when shaping students’ perceptions of intelligence, with students associating the most superlatives with affluent White boys’ capabilities. Through this analysis, I develop a new theoretical understanding of how school processes contribute to the gendered social construction of exceptionalism and reproduce social inequalities in early adolescence.

     
    more » « less