Abstract In the past decade, direct arylation polymerization (DArP) has rapidly developed as a sustainable synthetic protocol for cost‐effective, atom‐economical preparation of conjugated polymers. By circumventing monomer functionalization with toxic transmetallating reagents such as organostannane and organoboron required for Stille‐Migita and Suzuki‐Miyaura polymerization methods, DArP proceeds through a metal‐catalyzed CH activation pathway for the preparation of high‐performance conjugated polymer materials. This review evaluates the development of several classes of efficient catalysts/catalytic systems from small‐molecule studies to polymerizations, including the mechanisms involved in these transformations and how they inspire catalyst and monomer design for defect‐free conjugated polymer synthesis. Recent advances in developing more sustainable first‐row transition metal catalysts for DArP are also highlighted, and the fundamental understanding of these efficient and sustainable catalysts should motivate the pursuit for the next generation of catalytic design to enable more effective and environmentally friendly conjugated polymer synthesis.
more »
« less
Approaches for improving the sustainability of conjugated polymer synthesis using direct arylation polymerization (DArP)
Direct arylation polymerization (DArP) provides a more sustainable alternative to conventional methods for conjugated polymer synthesis, such as Stille–Migita or Suzuki–Miyura polymerizations. DArP proceeds through a C–H activation pathway, allowing for a reduction in the synthetic steps needed to access the monomer, since the installation of a transmetallating reagent, such as an organostannane or organoboron, is not required. However, compared to small-molecule synthesis, the prevalent conditions employed for DArP still require hazardous or unsustainably sourced reaction components, such as the solvent and transition-metal catalyst. This mini-review highlights recent work on the implementation of sustainable solvents, transition metal catalysts, and overall polymerization methods for DArP. The extension of small-molecule direct arylation conditions towards polymer synthesis is also discussed, along with the associated challenges, mechanistic considerations, and outlook for future work.
more »
« less
- Award ID(s):
- 1904650
- PAR ID:
- 10162619
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 630 to 640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite limited reports employing sustainable solvents for Direct Arylation Polymerization (DArP), the large amount of organic waste generated from conjugated polymer synthesis requires attention. Herein, we report the first emulsion-DArP methodology to afford polymers with molecular weights up to 14.5 kg mol −1 with a 10-fold reduction of organic solvent utilized.more » « less
-
Direct arylation is an appealing method for preparing π-conjugated materials, avoiding the prefunctionalization required for traditional cross-coupling methods. A major effort in organic electronic materials development is improving the environmental and economic impact of production; direct arylation polymerization (DArP) is an effective method to achieve these goals. Room-temperature polymerization would further improve the cost and energy efficiencies required to prepare these materials. Reported herein is new mechanistic work studying the underlying mechanism of room temperature direct arylation between iodobenzene and indole. Results indicate that room-temperature, Pd/Ag-catalyzed direct arylation systems are radical-mediated. This is in contrast to the commonly proposed two-electron mechanisms for direct arylation and appears to extend to other substrates such as benzo[ b ]thiophene and pentafluorobenzene.more » « less
-
Initial reports on the novel Cu-catalyzed direct arylation polymerization (Cu-DArP) stated that it required the use of aryl iodides. Herein, we report the first Cu-DArP methodology using more accessible and practical aryl-bromides with catalytic Cu, leading to a range of conjugated polymers with good molecular weights (up to 17.3 kDa) and an undetectable level of defects.more » « less
-
Abstract Alternating donor–acceptor copolymers are important materials with readily tunable optical and electronic properties. Direct arylation polymerization (DArP) is emerging as an attractive synthetic methodology for the synthesis of these polymers, avoiding the use of prefunctionalized building blocks. However, challenges remain in achieving well‐defined structure, high molecular weight, and impurity‐free polymers. Herein, a study to synthesize three well‐defined donor–acceptor copolymers through DArP is presented. Comparison of1H NMR and13C NMR, as well as optical and electrochemical properties analysis for the polymers and corresponding oligomers provides evidence for the regioregular structure of the polymers. On the basis of the chemical structure of poly(IIDCBT) and the solution electrochemical studies we surmised poly(IIDCBT) could potentially be an electron transport material for organic field‐effect transistors (OFETs), and we determined an electron mobility of 1.2×10−3 cm2 V−1 s−1for this material.more » « less
An official website of the United States government

