skip to main content

Title: Understanding extreme quasar optical variability with CRTS: II. Changing-state quasars
Abstract We present the results of a systematic search for quasars in the Catalina Real-time Transient Survey exhibiting both strong photometric and spectroscopic variability over a decadal baseline. We identify 111 sources with specific patterns of optical and mid-IR photometric behavior and a defined spectroscopic change. These “Changing-State” quasars (CSQs) form a higher luminosity sample to complement existing sets of “Changing-Look” AGN and quasars in the literature. The CSQs (by selection) exhibit larger photometric variability than the CLQs. The spectroscopic variability is marginally stronger in the CSQs than CLQs as defined by the change in Hβ/[O iii] ratio. We find 48 sources with declining Hβ flux, 63 sources with increasing Hβ flux and discover eight sources with z > 0.8, further extending the redshift arm. Our CSQ sample compares to the literature CLQ objects in similar distributions of Hβ flux ratios and differential Eddington ratios between high (bright) and low (dim) states. Taken as a whole, we find that this population of extreme varying quasars is associated with changes in the Eddington ratio and the timescales imply cooling/heating fronts propagating through the disk.
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1831412
Publication Date:
NSF-PAR ID:
10162971
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution,more »suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects.« less
  2. ABSTRACT We study the optical light curves – primarily probing the variable emission from the accretion disc – of ∼900 extreme variability quasars (EVQs, with maximum flux variations more than 1 mag) over an observed-frame baseline of ∼16 yr using public data from the SDSS Stripe 82, PanSTARRS-1 and the Dark Energy Survey. We classify the multiyear long-term light curves of EVQs into three categories roughly in the order of decreasing smoothness: monotonic decreasing or increasing (3.7 per cent), single broad peak and dip (56.8 per cent), and more complex patterns (39.5 per cent). The rareness of monotonic cases suggests that the major mechanisms driving the extreme optical variability do not operate over time-scales much longer than a few years. Simulated light curves with a damped random walk model generally under-predict the first two categories with smoother long-term trends. Despite the different long-term behaviours of these EVQs, there is little dependence of the long-term trend on the physical properties of quasars, such as their luminosity, BH mass, and Eddington ratio. The large dynamic range of optical flux variability over multiyear time-scales of these EVQs allows us to explore the ensemble correlation between the short-term (≲6 months) variability and the seasonal-average flux across the decade-long baseline (the rms-meanmore »flux relation). We find that unlike the results for X-ray variability studies, the linear short-term flux variations do not scale with the seasonal-average flux, indicating different mechanisms that drive the short-term flickering and long-term extreme variability of accretion disc emission. Finally, we present a sample of 16 EVQs, where the approximately bell-shaped large amplitude variation in the light curve can be reasonably well fit by a simple microlensing model.« less
  3. ABSTRACT We present a multiwavelength analysis of 28 of the most luminous low-redshift narrow-line, ultra-hard X-ray-selected active galactic nuclei (AGN) drawn from the 70-month Swift/BAT all-sky survey, with bolometric luminosities of $\log (L_{\rm bol} /{\rm erg\, s}^{-1}) \gtrsim 45.25$. The broad goal of our study is to determine whether these objects have any distinctive properties, potentially setting them aside from lower luminosity obscured AGN in the local Universe. Our analysis relies on the first data release of the BAT AGN Spectroscopic Survey (BASS/DR1) and on dedicated observations with the VLT, Palomar, and Keck observatories. We find that the vast majority of our sources agree with commonly used AGN selection criteria which are based on emission line ratios and on mid-infrared colours. Our AGN are pre-dominantly hosted in massive galaxies (9.8 ≲ log (M*/M⊙) ≲ 11.7); based on visual inspection of archival optical images, they appear to be mostly ellipticals. Otherwise, they do not have distinctive properties. Their radio luminosities, determined from publicly available survey data, show a large spread of almost four orders of magnitude – much broader than what is found for lower X-ray luminosity obscured AGN in BASS. Moreover, our sample shows no preferred combination of black hole massesmore »(MBH) and/or Eddington ratio (λEdd), covering 7.5 ≲ log (MBH/M⊙) ≲ 10.3 and 0.01 ≲ λEdd ≲ 1. Based on the distribution of our sources in the λEdd−NH plane, we conclude that our sample is consistent with a scenario where the amount of obscuring material along the line of sight is determined by radiation pressure exerted by the AGN on the dusty circumnuclear gas.« less
  4. Abstract Low luminosity active galactic nuclei (LLAGN) probe accretion physics in the low Eddington regime can provide additional clues about galaxy evolution. AGN variability is ubiquitous and thus provides a reliable tool for finding AGN. We analyze the All-Sky Automated Survey for SuperNovae light curves of 1218 galaxies with g < 14 mag and Sloan Digital Sky Survey spectra in search of AGN. We find 37 objects that are both variable and have AGN-like structure functions, which is about 3% of the sample. The majority of the variability selected AGN are LLAGN with Eddington ratios ranging from 10 −4 to 10 −2 . We thus estimate the fraction of LLAGN in the population of galaxies as 2% down to a median Eddington ratio of 2 × 10 −3 . Combining the BPT line ratio AGN diagnostics and the broad-line AGN, up to ∼60% of the AGN candidates are confirmed spectroscopically. The BPT diagnostics also classified 10%–30% of the candidates as star-forming galaxies rather than AGN.
  5. Context. Luminous blue variables (LBVs) are characterised by strong photometric and spectroscopic variability. They are thought to be in a transitory phase between O-type stars on the main sequence and the Wolf-Rayet stage. Recent studies also evoked the possibility that they might be formed through binary interaction. Only a few are known in binary systems so far, but their multiplicity fraction is still uncertain. Aims. We derive the binary fraction of the Galactic LBV population. We combine multi-epoch spectroscopy and long-baseline interferometry to probe separations from 0.1 to 120 mas around confirmed and candidate LBVs. Methods. We used a cross-correlation technique to measure the radial velocities of these objects. We identified spectroscopic binaries through significant radial velocity variability with an amplitude larger than 35 km s −1 . We also investigated the observational biases to take them into account when we established the intrinsic binary fraction. We used CANDID to detect interferometric companions, derive their flux fractions, and their positions on the sky. Results. From the multi-epoch spectroscopy, we derive an observed spectroscopic binary fraction of 26 −10 +16 %. Considering period and mass ratio ranges from log( P orb ) = 0 − 3 (i.e. from 1 to 1000 days), qmore » = 0.1 − 1.0, and a representative set of orbital parameter distributions, we find a bias-corrected binary fraction of 62 −24 +38 %. Based on data of the interferometric campaign, we detect a binary fraction of 70 ± 9% at projected separations between 1 and 120 mas. Based on the derived primary diameters and considering the distances of these objects, we measure for the first time the exact radii of Galactic LBVs to be between 100 and 650  R ⊙ . This means that it is unlikely that short-period systems are included among LBV-like stars. Conclusions. This analysis shows for the first time that the binary fraction in the Galactic LBV population is large. If they form through single-star evolution, their orbit must be large initially. If they form through a binary channel, the implication is that either massive stars in short binary systems must undergo a phase of fully non-conservative mass transfer to be able to sufficiently widen the orbit to form an LBV, or that LBVs form through merging in initially binary or triple systems. Interferometric follow-up would provide the distributions of orbital parameters at more advanced stages and would serve to quantitatively test the binary evolution in massive stars.« less