skip to main content


Title: Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
Abstract Recent micro-CT scans have demonstrated a much larger magnetic nanoparticle distribution volume in tumors after localized heating than those without heating, suggesting possible heating-induced nanoparticle migration. In this study, a theoretical simulation was performed on tumors injected with magnetic nanoparticles to evaluate the extent to which the nanoparticle redistribution affects the temperature elevation and thermal dosage required to cause permanent thermal damage to PC3 tumors. 0.1 cc of a commercially available ferrofluid containing magnetic nanoparticles was injected directly to the center of PC3 tumors. The control group consisted of four PC3 tumors resected after the intratumoral injection, while the experimental group consisted of another four PC3 tumors injected with ferrofluid and resected after 25 min of local heating. The micro-CT scan generated tumor model was attached to a mouse body model. The blood perfusion rates in the mouse body and PC3 tumor were first extracted based on the experimental data of average mouse surface temperatures using an infrared camera. A previously determined relationship between nanoparticle concentration and nanoparticle-induced volumetric heat generation rate was implemented into the theoretical simulation. Simulation results showed that the average steady-state temperature elevation in the tumors of the control group is higher than that in the experimental group where the nanoparticles are more spreading from the tumor center to the tumor periphery (control group: 70.6±4.7 °C versus experimental group: 69.2±2.6 °C). Further, we assessed heating time needed to cause permanent thermal damage to the entire tumor, based on the nanoparticle distribution in each tumor. The more spreading of nanoparticles to tumor periphery in the experimental group resulted in a much longer heating time than that in the control group. The modified thermal damage model by Dr. John Pearce led to almost the same temperature elevation distribution; however, the required heating time was at least 24% shorter than that using the traditional Arrhenius integral, despite the initial time delay. The results from this study suggest that in future simulation, the heating time needed when considering dynamic nanoparticle migration during heating is probably between 19 and 29 min based on the Pearce model. In conclusion, the study demonstrates the importance of including dynamic nanoparticle spreading during heating and accurate thermal damage model into theoretical simulation of temperature elevations in tumors to determine thermal dosage needed in magnetic nanoparticle hyperthermia design.  more » « less
Award ID(s):
1705538
NSF-PAR ID:
10163001
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Heat Transfer
Volume:
142
Issue:
7
ISSN:
0022-1481
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this study, we performed in vivo experiments on mice to evaluate whether whole-body hyperthermia enhances nanoparticle delivery to PC3 (prostatic cancer) tumors. PC3 xenograft tumors in immunodeficient mice were used in this study. The mice in the experimental group were subjected to whole-body hyperthermia by maintaining their body temperatures at 39–40 °C for 1 h. Interstitial fluid pressures (IFPs) in tumors were measured before heating, immediately after, and at 2 and 24 h postheating in both the experimental group and in a control group (without heating). A total of 0.2 ml of a newly developed nanofluid containing gold nanoparticles (AuNPs) was delivered via the tail vein in both groups. The micro-computed tomography (microCT) scanned images of the resected tumors were analyzed to visualize the nanoparticle distribution in the tumors and to quantify the total amount of nanoparticles delivered to the tumors. Statistically significant IFP reductions of 45% right after heating, 47% 2 h after heating, and 52% 24 h after heating were observed in the experimental group. Analyses of microCT scans of the resected tumors illustrated that nanoparticles were more concentrated near the tumor periphery rather than at the tumor center. The 1-h whole-body hyperthermia treatment resulted in more nanoparticles present in the tumor central region than that in the control group. The mass index calculated from the microCT scans suggested overall 42% more nanoparticle delivery in the experimental group than that in the control group. We conclude that 1-h mild whole-body hyperthermia leads to sustained reduction in tumoral IFPs and significantly increases the total amount of targeted gold nanoparticle deposition in PC3 tumors. The present study suggests that mild whole-body hyperthermia is a promising approach for enhancing targeted drug delivery to tumors. 
    more » « less
  2. null (Ed.)
    This work discusses in vivo experiments that were performed to evaluate whether local or whole-body heating to 40 °C reduced interstitial fluid pressures (IFPs) and enhanced nanoparticle delivery to subcutaneous PC3 human prostate cancer xenograft tumors in mice. After heating, 0.2 mL of a previously developed nanofluid containing gold nanoparticles (10 mg Au/mL) was injected via the tail vein. The induced whole-body hyperthermia led to increases in tumor and mouse body blood perfusion rates of more than 50% and 25%, respectively, while the increases were much smaller in the local heating group. In the whole-body hyperthermia groups, the IFP reduction from the baseline at the tumor center immediately after heating was found to be statistically significant when compared to the control group. The 1 h of local heating group showed IFP reductions at the tumor center, while the IFPs increased in the periphery of the tumor. The intratumoral gold nanoparticle accumulation was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Compared to the control group, 1 h or 4 h of experiencing whole-body hyperthermia resulted in an average increase of 51% or 67% in the gold deposition in tumors, respectively. In the 1 h of local heating group, the increase in the gold deposition was 34%. Our results suggest that 1 h of mild whole-body hyperthermia may be a cost-effective and readily implementable strategy for facilitating nanoparticle delivery to PC3 tumors in mice. 
    more » « less
  3. null (Ed.)
    Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0   g cm − 3 , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. 
    more » « less
  4. Transitional cell carcinoma of the bladder is particularly devastating due to its high rate of recurrence and difficulty in retention of treatments within the bladder. Current cystoscopic approaches to detect and stage the tumor are limited by the penetrative depth of the cystoscope light source, and intravesical dyes that highlight tumors for surgical resection are non-specific. To address the needs for improved specificity in tumor detection and follow-up, we report on a novel technology relying on the engineered core of mesoporous silica (MSN) with surface modifications that generate contrast in fluorescence and magnetic resonance imaging (MRI). The particle surface was further functionalized to include a bladder cancer cell specific peptide, Cyc6, identified via phage display. This peptide possesses nanomolar specificity for bladder cancer cells and homology across multiple species including mouse, canine, and human. Our study takes advantage of its target expression in bladder tumor which is not expressed in normal bladder wall. When functionalized to MSN, the Cyc6 improved binding efficiency and specificity for bladder cancer cells in vitro. In an in vivo model, MSN instilled into bladders of tumor-bearing mice enhanced T 1- and T 2-weighted MRI signals, improving the detection of the tumor boundaries. These findings support the notion that our targeted nanomaterial presents new options for early detection and eventual therapeutic intervention. Ultimately, the combination of real-time and repeated MRI evaluation of the tumors enhanced by nanoparticle contrast have the potential for translation into human clinical studies for tumor staging, therapeutic monitoring, and drug delivery. 
    more » « less
  5. A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second “effector” nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration. 
    more » « less