skip to main content

Title: Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants
The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Award ID(s):
1656656 1656691 1644209 1643877
Publication Date:
Journal Name:
Page Range or eLocation-ID:
1367 to 1372
Sponsoring Org:
National Science Foundation
More Like this
  1. Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (Engulfment Volume ∝ Body Length 3.57), the surface area of the baleen filter does not increase proportionally (Baleen Area ∝ Body Length1.82), and thus the filtration time of larger rorquals predictablymore »increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (Filter Time ∝ Body Length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems (UAS) -based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61 - 1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared to smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations.« less
  2. The largest animals are baleen filter feeders that exploit large aggregations of small-bodied plankton. Although this feeding mechanism has evolved multiple times in marine vertebrates, rorqual whales exhibit a distinct lunge filter feeding mode that requires extreme physiological adaptations—most of which remain poorly understood. Here, we review the biomechanics of the lunge feeding mechanism in rorqual whales that underlies their extraordinary foraging performance and gigantic body size.
  3. The unique engulfment filtration strategy of microphagous rorqual whales has evolved relatively recently (<5 Ma) and exploits extreme predator/prey size ratios to overcome the maneuverability advantages of swarms of small prey, such as krill. Forage fish, in contrast, have been engaged in evolutionary arms races with their predators for more than 100 million years and have performance capabilities that suggest they should easily evade whale-sized predators, yet they are regularly hunted by some species of rorqual whales. To explore this phenomenon, we determined, in a laboratory setting, when individual anchovies initiated escape from virtually approaching whales, then used these resultsmore »along with in situ humpback whale attack data to model how predator speed and engulfment timing affected capture rates. Anchovies were found to respond to approaching visual looming stimuli at expansion rates that give ample chance to escape from a sea lion-sized predator, but humpback whales could capture as much as 30–60% of a school at once because the increase in their apparent (visual) size does not cross their prey’s response threshold until after rapid jaw expansion. Humpback whales are, thus, incentivized to delay engulfment until they are very close to a prey school, even if this results in higher hydrodynamic drag. This potential exaptation of a microphagous filter feeding strategy for fish foraging enables humpback whales to achieve 7× the energetic efficiency (per lunge) of krill foraging, allowing for flexible foraging strategies that may underlie their ecological success in fluctuating oceanic conditions.

    « less
  4. Microscopic sessile suspension feeders live attached to surfaces and, by consuming bacteria-sized prey and by being consumed, they form an important part of aquatic ecosystems. Their environmental impact is mediated by their feeding rate, which depends on a self-generated feeding current. The feeding rate has been hypothesized to be limited by recirculating eddies that cause the organisms to feed from water that is depleted of food particles. However, those results considered organisms in still water, while ambient flow is often present in their natural habitats. We show, using a point-force model, that even very slow ambient flow, with speed severalmore »orders of magnitude less than that of the self-generated feeding current, is sufficient to disrupt the eddies around perpendicular suspension feeders, providing a constant supply of food-rich water. However, the feeding rate decreases in external flow at a range of non-perpendicular orientations due to the formation of recirculation structures not seen in still water. We quantify the feeding flow and observe such recirculation experimentally for the suspension feeder Vorticella convallaria in external flows typical of streams and rivers.« less
  5. The largest animals are the rorquals, a group of whales which rapidly engulf large aggregations of small-bodied animals along with the water in which they are embedded, with the latter subsequently expulsed via filtration through baleen. Represented by species like the blue, fin, and humpback whales, rorquals can exist in a wide range of body lengths (8–30 m) and masses (4000–190,000 kg). When feeding on krill, kinematic data collected by whale-borne biologging sensors suggest that they first oscillate their flukes several times to accelerate towards their prey, followed by a coasting period with mouth agape as the prey-water mixture ismore »engulfed in a process approximating a perfectly inelastic collision. These kinematic data, used along with momentum conservation and time-averages of a whale’s equation of motion, show the largest rorquals as generating significant body forces (10–40 kN) in order to set into forward motion enough engulfed water to at least double overall mass. Interestingly, a scaling analysis of these equations suggests significant reductions in the amount of body force generated per kilogram of body mass at the larger sizes. In other words, and in concert with the allometric growth of the buccal cavity, gigantism would involve smaller fractions of muscle mass to engulf greater volumes of water and prey, thereby imparting a greater efficiency to this unique feeding strategy.« less