skip to main content


Title: Energetic and physical limitations on the breaching performance of large whales
The considerable power needed for large whales to leap out of the water may represent the single most expensive burst maneuver found in nature. However, the mechanics and energetic costs associated with the breaching behaviors of large whales remain poorly understood. In this study we deployed whale-borne tags to measure the kinematics of breaching to test the hypothesis that these spectacular aerial displays are metabolically expensive. We found that breaching whales use variable underwater trajectories, and that high-emergence breaches are faster and require more energy than predatory lunges. The most expensive breaches approach the upper limits of vertebrate muscle performance, and the energetic cost of breaching is high enough that repeated breaching events may serve as honest signaling of body condition. Furthermore, the confluence of muscle contractile properties, hydrodynamics, and the high speeds required likely impose an upper limit to the body size and effectiveness of breaching whales.  more » « less
Award ID(s):
1656656 1656691 1644209
NSF-PAR ID:
10163078
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
9
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (Engulfment Volume ∝ Body Length 3.57), the surface area of the baleen filter does not increase proportionally (Baleen Area ∝ Body Length1.82), and thus the filtration time of larger rorquals predictably increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (Filter Time ∝ Body Length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems (UAS) -based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61 - 1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared to smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations. 
    more » « less
  2. Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch- changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths. 
    more » « less
  3. Synopsis

    Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost.

     
    more » « less
  4. Body condition is a crucial and indicative measure of an animal’s fitness, reflecting overall foraging success, habitat quality, and balance between energy intake and energetic investment toward growth, maintenance, and reproduction. Recently, drone-based photogrammetry has provided new opportunities to obtain body condition estimates of baleen whales in one, two or three dimensions (1D, 2D, and 3D, respectively) – a single width, a projected dorsal surface area, or a body volume measure, respectively. However, no study to date has yet compared variation among these methods and described how measurement uncertainty scales across these dimensions. This associated uncertainty may affect inference derived from these measurements, which can lead to misinterpretation of data, and lack of comparison across body condition measurements restricts comparison of results between studies. Here we develop a Bayesian statistical model using known-sized calibration objects to predict the length and width measurements of unknown-sized objects (e.g., a whale). We use the fitted model to predict and compare uncertainty associated with 1D, 2D, and 3D photogrammetry-based body condition measurements of blue, humpback, and Antarctic minke whales – three species of baleen whales with a range of body sizes. The model outputs a posterior predictive distribution of body condition measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty. We find that uncertainty does not scale linearly across multi-dimensional measurements, with 2D and 3D uncertainty increasing by a factor of 1.45 and 1.76 compared to 1D, respectively. Each standardized body condition measurement is highly correlated with one another, yet 2D body area index (BAI) accounts for potential variation along the body for each species and was the most precise body condition metric. We hope this study will serve as a guide to help researchers select the most appropriate body condition measurement for their purposes and allow them to incorporate photogrammetric uncertainty associated with these measurements which, in turn, will facilitate comparison of results across studies. 
    more » « less
  5. P1-97: In early summer, nesting Bluegill Sunfish (Lepomis macrochirus) expend large amounts of energy building nests, spawning, protecting their offspring, and chasing away predators. The energetic demands of nesting are likely significant and may heavily influence their life history and reproductive success. However, the exact metabolic cost of nesting is difficult to quantify without precise information about the three dimensional position of the center of mass of nesting fish. Field observations of Bluegill Sunfish nesting in Lake Waban (Wellesley, MA) were obtained throughout June until early July by using underwater cameras, fitted with a temperature and light sensor, calibrated to allow three dimensional tracking. The positional data of nesting Bluegill Sunfish were analyzed to derive velocity and acceleration in order to calculate their metabolic rate. We chose to analyze repetitive nesting behaviors, such as rim circling and defensive chasing, due to their frequency of occurrence and consequentially high metabolic demand. Using metabolic rates calculated from Bluegill swimming in a flume, we found that rim circling is nearly 22.2 times more metabolically expensive than the average metabolic cost of swimming in a straight path for the same velocity and duration. Since rim circling is so metabolically expensive and since we estimate that rim circling occurs nearly 25,500 times during an 8 day nesting period, our results strongly suggest that the nesting cycle is one of the most critical periods in the life history of Bluegill Sunfish. The high energetic demands of nesting and the temporary bout of starvation while the fish occupies its nest results in a small margin of error for reproductive success. These conclusions deepen our understanding of male Bluegills’ true paternal investment and can serve to illuminate our understanding of their life history from a quantifiable perspective. 
    more » « less