skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scientific Visualization: Enriching Vocabulary via the Human Hand
As scientific data grow larger and more complex, an equally rich visual vocabulary is needed to fully articulate its insights. We present a series of images that are made possible by a recent technical development “Artifact-Based Rendering,” a component of our broader effort to create a methodology for scientific visualization that draws on principles of art and design.  more » « less
Award ID(s):
1704604
PAR ID:
10163259
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE VIS Arts Program (VISAP) 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: 100 words Jurors are increasingly exposed to scientific information in the courtroom. To determine whether providing jurors with gist information would assist in their ability to make well-informed decisions, the present experiment utilized a Fuzzy Trace Theory-inspired intervention and tested it against traditional legal safeguards (i.e., judge instructions) by varying the scientific quality of the evidence. The results indicate that jurors who viewed high quality evidence rated the scientific evidence significantly higher than those who viewed low quality evidence, but were unable to moderate the credibility of the expert witness and apply damages appropriately resulting in poor calibration. Summary: <1000 words Jurors and juries are increasingly exposed to scientific information in the courtroom and it remains unclear when they will base their decisions on a reasonable understanding of the relevant scientific information. Without such knowledge, the ability of jurors and juries to make well-informed decisions may be at risk, increasing chances of unjust outcomes (e.g., false convictions in criminal cases). Therefore, there is a critical need to understand conditions that affect jurors’ and juries’ sensitivity to the qualities of scientific information and to identify safeguards that can assist with scientific calibration in the courtroom. The current project addresses these issues with an ecologically valid experimental paradigm, making it possible to assess causal effects of evidence quality and safeguards as well as the role of a host of individual difference variables that may affect perceptions of testimony by scientific experts as well as liability in a civil case. Our main goal was to develop a simple, theoretically grounded tool to enable triers of fact (individual jurors) with a range of scientific reasoning abilities to appropriately weigh scientific evidence in court. We did so by testing a Fuzzy Trace Theory-inspired intervention in court, and testing it against traditional legal safeguards. Appropriate use of scientific evidence reflects good calibration – which we define as being influenced more by strong scientific information than by weak scientific information. Inappropriate use reflects poor calibration – defined as relative insensitivity to the strength of scientific information. Fuzzy Trace Theory (Reyna & Brainerd, 1995) predicts that techniques for improving calibration can come from presentation of easy-to-interpret, bottom-line “gist” of the information. Our central hypothesis was that laypeople’s appropriate use of scientific information would be moderated both by external situational conditions (e.g., quality of the scientific information itself, a decision aid designed to convey clearly the “gist” of the information) and individual differences among people (e.g., scientific reasoning skills, cognitive reflection tendencies, numeracy, need for cognition, attitudes toward and trust in science). Identifying factors that promote jurors’ appropriate understanding of and reliance on scientific information will contribute to general theories of reasoning based on scientific evidence, while also providing an evidence-based framework for improving the courts’ use of scientific information. All hypotheses were preregistered on the Open Science Framework. Method Participants completed six questionnaires (counterbalanced): Need for Cognition Scale (NCS; 18 items), Cognitive Reflection Test (CRT; 7 items), Abbreviated Numeracy Scale (ABS; 6 items), Scientific Reasoning Scale (SRS; 11 items), Trust in Science (TIS; 29 items), and Attitudes towards Science (ATS; 7 items). Participants then viewed a video depicting a civil trial in which the defendant sought damages from the plaintiff for injuries caused by a fall. The defendant (bar patron) alleged that the plaintiff (bartender) pushed him, causing him to fall and hit his head on the hard floor. Participants were informed at the outset that the defendant was liable; therefore, their task was to determine if the plaintiff should be compensated. Participants were randomly assigned to 1 of 6 experimental conditions: 2 (quality of scientific evidence: high vs. low) x 3 (safeguard to improve calibration: gist information, no-gist information [control], jury instructions). An expert witness (neuroscientist) hired by the court testified regarding the scientific strength of fMRI data (high [90 to 10 signal-to-noise ratio] vs. low [50 to 50 signal-to-noise ratio]) and gist or no-gist information both verbally (i.e., fairly high/about average) and visually (i.e., a graph). After viewing the video, participants were asked if they would like to award damages. If they indicated yes, they were asked to enter a dollar amount. Participants then completed the Positive and Negative Affect Schedule-Modified Short Form (PANAS-MSF; 16 items), expert Witness Credibility Scale (WCS; 20 items), Witness Credibility and Influence on damages for each witness, manipulation check questions, Understanding Scientific Testimony (UST; 10 items), and 3 additional measures were collected, but are beyond the scope of the current investigation. Finally, participants completed demographic questions, including questions about their scientific background and experience. The study was completed via Qualtrics, with participation from students (online vs. in-lab), MTurkers, and non-student community members. After removing those who failed attention check questions, 469 participants remained (243 men, 224 women, 2 did not specify gender) from a variety of racial and ethnic backgrounds (70.2% White, non-Hispanic). Results and Discussion There were three primary outcomes: quality of the scientific evidence, expert credibility (WCS), and damages. During initial analyses, each dependent variable was submitted to a separate 3 Gist Safeguard (safeguard, no safeguard, judge instructions) x 2 Scientific Quality (high, low) Analysis of Variance (ANOVA). Consistent with hypotheses, there was a significant main effect of scientific quality on strength of evidence, F(1, 463)=5.099, p=.024; participants who viewed the high quality evidence rated the scientific evidence significantly higher (M= 7.44) than those who viewed the low quality evidence (M=7.06). There were no significant main effects or interactions for witness credibility, indicating that the expert that provided scientific testimony was seen as equally credible regardless of scientific quality or gist safeguard. Finally, for damages, consistent with hypotheses, there was a marginally significant interaction between Gist Safeguard and Scientific Quality, F(2, 273)=2.916, p=.056. However, post hoc t-tests revealed significantly higher damages were awarded for low (M=11.50) versus high (M=10.51) scientific quality evidence F(1, 273)=3.955, p=.048 in the no gist with judge instructions safeguard condition, which was contrary to hypotheses. The data suggest that the judge instructions alone are reversing the pattern, though nonsignificant, those who received the no gist without judge instructions safeguard awarded higher damages in the high (M=11.34) versus low (M=10.84) scientific quality evidence conditions F(1, 273)=1.059, p=.30. Together, these provide promising initial results indicating that participants were able to effectively differentiate between high and low scientific quality of evidence, though inappropriately utilized the scientific evidence through their inability to discern expert credibility and apply damages, resulting in poor calibration. These results will provide the basis for more sophisticated analyses including higher order interactions with individual differences (e.g., need for cognition) as well as tests of mediation using path analyses. [References omitted but available by request] Learning Objective: Participants will be able to determine whether providing jurors with gist information would assist in their ability to award damages in a civil trial. 
    more » « less
  2. null (Ed.)
    Annotated primary scientific literature is a teaching and learning resource that provides scaffolding for undergraduate students acculturating to the authentic scientific practice of obtaining and evaluating information through the medium of primary scientific literature. Utilizing annotated primary scientific literature as an integrated pedagogical tool could enable more widespread use of primary scientific literature in undergraduate science classrooms with minimal disruption to existing syllabi. Research is ongoing to determine an optimal implementation protocol, with these preliminary iterations presented here serving as a first look at how students respond to annotated primary scientific literature. The undergraduate biology student participants in our study did not, in general, have an abundance of experience reading primary scientific literature; however, they found the annotations useful, especially for vocabulary and graph interpretation. We present here an implementation protocol for using annotated primary literature in the classroom that minimizes the use of valuable classroom time and requires no additional pedagogical training for instructors. 
    more » « less
  3. Research on socio-scientific issues (SSI) has revealed that it is critical for learners to develop a systematic understanding of the underlying issue. In this paper, we explore how modeling can facilitate students’ systems thinking in the context of SSI. Building on evidence from prior research in promoting systems thinking skills through modeling in scientific contexts, we hypothesize that a similar modeling approach could effectively foster students’ systematic understanding of complex societal issues. In particular, we investigate the affordances of socio-scientific models in promoting students’ systems thinking in the context of COVID-19. We examine learners’ experiences and reflections concerning three unique epistemic features of socio-scientific models, (1) knowledge representation, (2) knowledge justification, and (3) systems thinking. The findings of this study demonstrate that, due to the epistemic differences from traditional scientific modeling approach, engaging learners in developing socio-scientific models presents unique opportunities and challenges for SSI teaching and learning. It provides evidence that, socio-scientific models can serve as not only an effective but also an equitable tool for addressing this issue. 
    more » « less
  4. null (Ed.)
    Scientific literature, as one of the major knowledge resources, provides abundant textual evidence that has great potential to support high-quality scientific hypothesis validation. In this paper, we study the problem of textual evidence mining in scientific literature: given a scientific hypothesis as a query triplet, find the textual evidence sentences in scientific literature that support the input query. A critical challenge for textual evidence mining in scientific literature is to retrieve high-quality textual evidence without human supervision. Because it is non-trivial to obtain a large set of human-annotated articles con-taining evidence sentences in scientific literature. To tackle this challenge, we propose EVIDENCEMINER, a high-quality textual evidence retrieval method for scientific literature without human-annotated training examples. To achieve high-quality textual evidence retrieval, we leverage heterogeneous information from both existing knowledge bases and massive unstructured text. We propose to construct a large heterogeneous information network (HIN) to build connections between the user-input queries and the candidate evidence sentences. Based on the constructed HIN, we propose a novel HIN embedding method that directly embeds the nodes onto a spherical space to improve the retrieval performance. Quantitative experiments on a huge biomedical literature corpus (over 4 million sentences) demonstrate that EVIDENCEMINER significantly outperforms baseline methods for unsupervised textual evidence retrieval. Case studies also demonstrate that our HIN construction and embedding greatly benefit many downstream applications such as textual evidence interpretation and synonym meta-pattern discovery. 
    more » « less
  5. Holme, Thomas (Ed.)
    Reading and understanding scientific literature is an essential skill for any scientist to learn. While students’ scientific literacy can be improved by reading research articles, an article’s technical language and structure can hinder students’ understanding of the scientific material. Furthermore, many students struggle with interpreting graphs and other models of data commonly found in scientific literature. To introduce students to scientific literature and promote improved understanding of data and graphs, we developed a guided-inquiry activity adapted from a research article on snow chemistry and implemented it in a general chemistry laboratory course. Here, we describe how we adapted figures from the primary literature source and developed questions to scaffold the guided-inquiry activity. Results from semi-structured qualitative interviews suggest that students learn about snow chemistry processes and engage in scientific practices, including data analysis and interpretation, through this activity. This activity is applicable in other introductory science courses as educators can adapt most scientific articles into a guided-inquiry activity. 
    more » « less