skip to main content


Title: Compound disease and wildfire disturbances alter opportunities for seedling regeneration in resprouter-dominated forests
Human-altered disturbance regimes and changing climatic conditions can reduce seed availability and suitable microsites, limiting seedling regeneration in recovering forest systems. Thus, resprouting plants, which can persist in situ, are expected to expand in dominance in many disturbance-prone forests. However, resprouters may also be challenged by changing regimes, and the mechanisms determining facultative seedling recruitment by resprouting species, which will determine both the future spread and current persistence of these populations, are poorly understood. In the resprouter-dominated forests of coastal California, interactions between wildfire and an emerging disease, sudden oak death (SOD), alter disturbance severity and tree mortality, which may shift forest regeneration trajectories. We examine this set of compound disturbances to (1) assess the influence of seed limitation, biotic competition, and abiotic conditions on seedling regeneration in resprouting populations; (2) investigate whether disease-fire interactions alter postfire seedling regeneration, which have implications for future disease dynamics and shifts in forest composition. Following a wildfire that impacted a preexisting plot network in SOD-affected forests, we monitored seedling abundances and survival over eight years. With pre- and postfire data, we assessed relationships between regeneration dynamics and disturbance severity, biotic, and abiotic variables, using Bayesian generalized linear models and mixed models. Our results indicate that postfire seedling regeneration by resprouting species was shaped by contrasting mechanisms reflecting seed limitation and competitive release. Seedling abundances declined with decreasing postfire survival of mature, conspecific stems, while belowground survival of resprouting genets had no effect. However, where seed sources persisted, seedling abundances and survival generally increased with the prefire severity of disease impacts, suggesting that decreased competition with adults may enhance seedling recruitment in this resprouter-dominated system. Species’ regeneration responses varied with their relative susceptibility to SOD and suggest compositional shifts, which will determine future disease management and forest restoration actions. These results additionally highlight that mechanisms related to biotic competition, seed limitation, and opportunities for seedling recruitment beneath mature canopies may determine possible shifts in the occurrence of resprouting traits. This result has broad applications to other systems impacted by human-altered regimes where asexual persistence may be predicted to be a beneficial life history strategy.  more » « less
Award ID(s):
1753965
NSF-PAR ID:
10163337
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
2
ISSN:
0046-1237
Page Range / eLocation ID:
e02991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human‐altered disturbance regimes and changing climatic conditions can reduce seed availability and suitable microsites, limiting seedling regeneration in recovering forest systems. Thus, resprouting plants, which can persist in situ, are expected to expand in dominance in many disturbance‐prone forests. However, resprouters may also be challenged by changing regimes, and the mechanisms determining facultative seedling recruitment by resprouting species, which will determine both the future spread and current persistence of these populations, are poorly understood. In the resprouter‐dominated forests of coastal California, interactions between wildfire and an emerging disease, sudden oak death (SOD), alter disturbance severity and tree mortality, which may shift forest regeneration trajectories. We examine this set of compound disturbances to (1) assess the influence of seed limitation, biotic competition, and abiotic conditions on seedling regeneration in resprouting populations; (2) investigate whether disease‐fire interactions alter postfire seedling regeneration, which have implications for future disease dynamics and shifts in forest composition. Following a wildfire that impacted a preexisting plot network in SOD‐affected forests, we monitored seedling abundances and survival over eight years. With pre‐ and postfire data, we assessed relationships between regeneration dynamics and disturbance severity, biotic, and abiotic variables, using Bayesian generalized linear models and mixed models. Our results indicate that postfire seedling regeneration by resprouting species was shaped by contrasting mechanisms reflecting seed limitation and competitive release. Seedling abundances declined with decreasing postfire survival of mature, conspecific stems, while belowground survival of resprouting genets had no effect. However, where seed sources persisted, seedling abundances and survival generally increased with the prefire severity of disease impacts, suggesting that decreased competition with adults may enhance seedling recruitment in this resprouter‐dominated system. Species’ regeneration responses varied with their relative susceptibility to SOD and suggest compositional shifts, which will determine future disease management and forest restoration actions. These results additionally highlight that mechanisms related to biotic competition, seed limitation, and opportunities for seedling recruitment beneath mature canopies may determine possible shifts in the occurrence of resprouting traits. This result has broad applications to other systems impacted by human‐altered regimes where asexual persistence may be predicted to be a beneficial life history strategy.

     
    more » « less
  2. Abstract

    The spatial overlap of multiple ecological disturbances in close succession has the capacity to alter trajectories of ecosystem recovery. Widespread bark beetle outbreaks and wildfire have affected many forests in western North America in the past two decades in areas of important habitat for native ungulates. Bark beetle outbreaks prior to fire may deplete seed supply of the host species, and differences in fire‐related regeneration strategies among species may shift the species composition and structure of the initial forest trajectory. Subsequent browsing of postfire tree regeneration by large ungulates, such as elk (Cervus canadensis), may limit the capacity for regeneration to grow above the browse zone to form the next forest canopy. Five stand‐replacing wildfires burned ~60,000 ha of subalpine forest that had previously been affected by severe (>90% mortality) outbreaks of spruce beetle (SB,Dendroctonus rufipennis) in Engelmann spruce (Picea engelmannii) in 2012–2013 in southwestern Colorado. Here we examine the drivers of variability in abundance of newly established conifer tree seedlings [spruce and subalpine fir (Abies lasiocarpa)] and resprouts of quaking aspen (Populus tremuloides) following the short‐interval sequence of SB outbreaks and wildfire (2–8 yr between SB outbreak and fire) at sites where we previously reconstructed severities of SB and fire. We then examine the implications of ungulate browsing for forest recovery. We found that abundances of postfire spruce seedling establishment decreased substantially in areas of severe SB outbreak. Prolific aspen resprouting in stands with live aspen prior to fire will favor an initial postfire forest trajectory dominated by aspen. However, preferential browsing of postfire aspen resprouts by ungulates will likely slow the rate of canopy recovery but browsing is unlikely to alter the species composition of the future forest canopy. Collectively, our results show that SB outbreak prior to fire increases the vulnerability of spruce–fir forests to shifts in forest type (conifer to aspen) and physiognomic community type (conifer forest to non‐forest). By identifying where compounded disturbance interactions are likely to limit recovery of forests or tree species, our findings are useful for developing adaptive management strategies in the context of warming climate and shifting disturbance regimes.

     
    more » « less
  3. Abstract

    Anthropogenic activities have altered historical disturbance regimes, and understanding the mechanisms by which these shifting perturbations interact is essential to predicting where they may erode ecosystem resilience. Emerging infectious plant diseases, caused by human translocation of nonnative pathogens, can generate ecologically damaging forms of novel biotic disturbance. Further, abiotic disturbances, such as wildfire, may influence the severity and extent of disease‐related perturbations via their effects on the occurrence of hosts, pathogens and microclimates; however, these interactions have rarely been examined.

    The disease ‘sudden oak death’ (SOD), associated with the introduced pathogenPhytophthora ramorum, causes acute, landscape‐scale tree mortality in California's fire‐prone coastal forests. Here, we examined interactions between wildfire and the biotic disturbance impacts of this emerging infectious disease. Leveraging long‐term datasets that describe wildfire occurrence andP. ramorumdynamics across the Big Sur region, we modelled the influence of recent and historical fires on epidemiological parameters, including pathogen presence, infestation intensity, reinvasion, and host mortality.

    Past wildfire altered disease dynamics and reduced SOD‐related mortality, indicating a negative interaction between these abiotic and biotic disturbances. Frequently burned forests were less likely to be invaded byP. ramorum, had lower incidence of host infection, and exhibited decreased disease‐related biotic disturbance, which was associated with reduced occurrence and density of epidemiologically significant hosts. Following a recent wildfire, survival of mature bay laurel, a key sporulating host, was the primary driver ofP. ramoruminfestation and reinvasion, but younger, rapidly regenerating host vegetation capable of sporulation did not measurably influence disease dynamics. Notably, the effect ofP. ramoruminfection on host mortality was reduced in recently burned areas, indicating that the loss of tall, mature host canopies may temporarily dampen pathogen transmission and ‘release’ susceptible species from significant inoculum pressure.

    Synthesis. Cumulatively, our findings indicate that fire history has contributed to heterogeneous patterns of biotic disturbance and disease‐related decline across this landscape, via changes to the both the occurrence of available hosts and the demography of epidemiologically important host populations. These results highlight that human‐altered abiotic disturbances may play a foundational role in structuring infectious disease dynamics, contributing to future outbreak emergence and driving biotic disturbance regimes.

     
    more » « less
  4. Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.

     
    more » « less
  5. Abstract Background and Aims

    Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico.

    Methods

    We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016.

    Key Results

    The previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time.

    Conclusions

    Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.

     
    more » « less