skip to main content

Title: Synthesis, photovoltaic performances and TD-DFT modeling of push–pull diacetylide platinum complexes in TiO 2 based dye-sensitized solar cells
In this joint experimental–theoretical work, we present the synthesis and optical and electrochemical characterization of five new bis-acetylide platinum complex dyes end capped with diphenylpyranylidene moieties, as well as their performances in dye-sensitized solar cells (DSCs). Theoretical calculations relying on Time-Dependent Density Functional Theory (TD-DFT) and a range-separated hybrid show a very good match with experimental data and allow us to quantify the charge-transfer character of each compound. The photoconversion efficiency obtained reaches 4.7% for 8e (see TOC Graphic) with the tri-thiophene segment, which is among the highest efficiencies reported for platinum complexes in DSCs.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Trans.
Page Range or eLocation-ID:
11233 to 11242
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we present experimental and theoretical results on dissociative electron attachment and dissociative ionisation for the potential FEBID precursor cis -Pt(CO) 2 Cl 2 . UHV surface studies have shown that high purity platinum deposits can be obtained from cis -Pt(CO) 2 Cl 2 . The efficiency and energetics of ligand removal through these processes are discussed and experimental appearance energies are compared to calculated thermochemical thresholds. The present results demonstrate the potential effectiveness of electron-induced reactions in the deposition of this FEBID precursor, and these are discussed in conjunction with surface science studies on this precursor and the design of new FEBID precursors.
  2. Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo- and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2(CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2Cl2 (cisplatin) and the carbonyl analog Pt(CO)2Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2Cl2.
  3. The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1−10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications.
  4. Tandem catalysis couples multiple reactions and promises to improve chemical processing, but precise spatiotemporal control over reactive intermediates remains elusive. We used atomic layer deposition to grow In2O3over Pt/Al2O3, and this nanostructure kinetically couples the domains through surface hydrogen atom transfer, resulting in propane dehydrogenation (PDH) to propylene by platinum, then selective hydrogen combustion by In2O3, without excessive hydrocarbon combustion. Other nanostructures, including platinum on In2O3or platinum mixed with In2O3, favor propane combustion because they cannot organize the reactions sequentially. The net effect is rapid and stable oxidative dehydrogenation of propane at high per-pass yields exceeding the PDH equilibrium. Tandem catalysis using this nanoscale overcoating geometry is validated as an opportunity for highly selective catalytic performance in a grand challenge reaction.

  5. We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′more »states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.« less