skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aurora Kinase A-YBX1 Synergy Fuels Aggressive Oncogenic Phenotypes and Chemoresistance in Castration-Resistant Prostate Cancer
Multifunctional protein YBX1 upregulation promotes castration-resistant prostate cancer (CRPC). However, YBX1 protein abundance, but not its DNA status or mRNA levels, predicts CRPC recurrence, although the mechanism remains unknown. Similarly, the mechanism by which YBX1 regulates androgen receptor (AR) signaling remains unclear. We uncovered the first molecular mechanism of YBX1 upregulation at a post-translational level. YBX1 was identified as an Aurora Kinase-A (AURKA) substrate using a chemical screen. AURKA phosphorylates YBX1 at two key residues, which stabilizes it and promotes its nuclear translocation. YBX1 reciprocates and stabilizes AURKA, thereby initiating a synergistic loop. Notably, phospho-resistant YBX1 is dominant-negative and fully inhibits epithelial to mesenchymal transition, chemoresistance, drug-resistance and tumorigenesis in vivo. Unexpectedly, we further observed that YBX1 upregulates AR post-translationally by preventing its ubiquitylation, but not by increasing its transcription as reported before. Uncovering YBX1-mediated AR stabilization is highly significant due to AR’s critical role in both androgen-sensitive prostate cancer and CRPC. As YBX1 inhibitors are unknown, AURKA inhibitors provide a potent tool to degrade both YBX1 and AR simultaneously. Finally, this is the first study to show a reciprocal loop between YBX1 and its kinase, indicating that their concomitant inhibition will be act synergistically for CRPC therapy.  more » « less
Award ID(s):
1708823
PAR ID:
10164390
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Cancers
Volume:
12
Issue:
3
ISSN:
2072-6694
Page Range / eLocation ID:
660
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SPOP, an adaptor protein for E3 ubiquitin ligase can function as a tumor-suppressor or a tumor-enhancer. In castration-resistant prostate cancer (CRPC), it inhibits tumorigenesis by degrading many oncogenic targets, including androgen receptor (AR). Expectedly, SPOP is the most commonly mutated gene in CRPC (15%), which closely correlates with poor prognosis. Importantly, 85% of tumors that retain wild-type SPOP show reduced protein levels, indicating that SPOP downregulation is an essential step in CRPC progression. However, the underlying molecular mechanism remains unknown. This study uncovered the first mechanism of SPOP regulation in any type of cancer. We identified SPOP as a direct substrate of Aurora A (AURKA) using an innovative technique. AURKA directly phosphorylates SPOP at three sites, causing its ubiquitylation. SPOP degradation drives highly aggressive oncogenic phenotypes in cells and in vivo including stabilizing AR, ARv7 and c-Myc. Further, SPOP degrades AURKA via a feedback loop. SPOP upregulation is one of the mechanisms by which enzalutamide exerts its efficacy. Consequently, phospho-resistant SPOP fully abrogates tumorigenesis and EMT in vivo, and renders CRPC cells sensitive to enzalutamide. While genomic mutations of SPOP can be treated with gene therapy, identification of AURKA as an upstream regulator of SPOP provides a powerful opportunity for retaining WT-SPOP in a vast majority of CRPC patients using AURKA inhibitors ± enzalutamide, thereby treating the disease and inhibiting its progression. 
    more » « less
  2. Dysregulation of the receptor tyrosine kinases (RTKs) by means of mutation, amplification or overexpression plays a crucial role in cell growth, cell survival, cell motility during cancer progression and metastasis. EPHA3 (erythropoietin-producing hepatocellular carcinoma cell surface type A receptor 3) is a member of the RTKs. Evidence indicates that the upregulation of the EPHA3 activity is implicated in the pathobiology of various cancers, including prostate cancer, and thus, it is a prime therapeutic target in cancer. However, the role of EPHA3 signaling in prostate cancer progression remains obscure. Currently, the development of castration-resistant prostate cancer (CRPC) poses a clinical challenge because it is lethal. The molecular mechanisms that contribute to lethal prostate cancer are largely unknown. The objective of this study is to investigate whether EPHA3 signaling plays a critical role in prostate cancer progression and therapeutic relapse. Our analysis of the prostate cancer public datasets revealed that the EPHA3 gene was amplified up to 19% of metastatic CRPC cases with the neuroendocrine phenotype. Our immunological assay confirmed the positive staining of EPHA3 protein in human prostate cancer specimens. Our semi-quantitative and quantitative PCR assays demonstrated that the levels of EPHA3 vary among established prostate cancer cell lines. Nevertheless, we consistently found that the levels of EPHA3 mRNA in CRPC cell line, C4-2, were 3-fold higher than its castration-sensitive parental LNCaP cells. Furthermore, we demonstrated that an increase in expression of EPHA3 mRNA in C4-2 compared with LNCaP cells coincided with the upregulation of the EPHA3 protein, as independently confirmed by western blotting and immunofluorescence imaging. These findings indicate that EPHA3 may confer an aggressive prostate cancer cell phenotype. Because androgen receptor (AR) signaling is a potent mediator of CRPC cell growth and survival, the targeting of EPHA3 signaling alone or together with AR may improve the efficacy of current therapies for patients with advanced prostate cancer. 
    more » « less
  3. The transcriptional coactivator YAP1 (yes-associated protein 1) regulates cell proliferation, cell–cell interactions, organ size, and tumorigenesis. Post-transcriptional modifications and nuclear translocation of YAP1 are crucial for its nuclear activity. The objective of this study was to elucidate the mechanism by which the steroid hormone androgen regulates YAP1 nuclear entry and functions in several human prostate cancer cell lines. We demonstrate that androgen exposure suppresses the inactivating post-translational modification phospho–Ser-127 in YAP1, coinciding with increased YAP1 nuclear accumulation and activity. Pharmacological and genetic experiments revealed that intact androgen receptor signaling is necessary for androgen's inactivating effect on phospho–Ser-127 levels and increased YAP1 nuclear entry. We also found that androgen exposure antagonizes Ser/Thr kinase 4 (STK4/MST1) signaling, stimulates the activity of protein phosphatase 2A, and thereby attenuates the phospho–Ser-127 modification and promotes YAP1 nuclear localization. Results from quantitative RT-PCR and CRISPR/Cas9–aided gene knockout experiments indicated that androgen differentially regulates YAP1-dependent gene expression. Furthermore, an unbiased computational analysis of the prostate cancer data from The Cancer Genome Atlas revealed that YAP1 and androgen receptor transcript levels correlate with each other in prostate cancer tissues. These findings indicate that androgen regulates YAP1 nuclear localization and its transcriptional activity through the androgen receptor–STK4/MST1–protein phosphatase 2A axis, which may have important implications for human diseases such as prostate cancer. 
    more » « less
  4. Abstract Despite multiple new‐drug approvals in recent years, prostate cancer remains a global health challenge because of the prostate cancers are resistant to androgen deprivation therapy. Here, we show that a small D‐phosphopeptide undergoes prostatic acid phosphatase (PAP)‐instructed self‐assembly for inhibiting castration‐resistant prostate cancer (CRPC) cells. Specifically, the installation of phosphate at the C‐terminal of a D‐tripeptide results in the D‐phosphopeptide. Dephosphorylating the D‐phosphopeptide by PAP forms uniform nanofibers that inhibit VCaP, a CRPC cell. A non‐hydrolyzable phosphate analogue of the D‐phosphopeptide, which shares similar self‐assembling properties with the D‐phosphopeptide, confirms that PAP‐instructed assembly is critical for the inhibition of VCaP. This work, for the first time, demonstrates PAP‐instructed self‐assembly of peptides for selective inhibiting CRPC cells. 
    more » « less
  5. Saleem, M. (Ed.)
    NKX3.1’s downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2’s ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics. 
    more » « less