skip to main content

Title: From Medical Imaging to Radiomics: Role of Data Science for Advancing Precision Health
Treating disease according to precision health requires the individualization of therapeutic solutions as a cardinal step that is part of a process that typically depends on multiple factors. The starting point is the collection and assembly of data over time to assess the patient’s health status and monitor response to therapy. Radiomics is a very important component of this process. Its main goal is implementing a protocol to quantify the image informative contents by first mining and then extracting the most representative features. Further analysis aims to detect potential disease phenotypes through signs and marks of heterogeneity. As multimodal images hinge on various data sources, and these can be integrated with treatment plans and follow-up information, radiomics is naturally centered on dynamically monitoring disease progression and/or the health trajectory of patients. However, radiomics creates critical needs too. A concise list includes: (a) successful harmonization of intra/inter-modality radiomic measurements to facilitate the association with other data domains (genetic, clinical, lifestyle aspects, etc.); (b) ability of data science to revise model strategies and analytics tools to tackle multiple data types and structures (electronic medical records, personal histories, hospitalization data, genomic from various specimens, imaging, etc.) and to offer data-agnostic solutions for patient more » outcomes prediction; (c) and model validation with independent datasets to ensure generalization of results, clinical value of new risk stratifications, and support to clinical decisions for highly individualized patient management. « less
Authors:
;
Award ID(s):
1922843
Publication Date:
NSF-PAR ID:
10164424
Journal Name:
Journal of Personalized Medicine
Volume:
10
Issue:
1
Page Range or eLocation-ID:
15
ISSN:
2075-4426
Sponsoring Org:
National Science Foundation
More Like this
  1. With the wide application of electronic health records (EHR) in healthcare facilities, health event prediction with deep learning has gained more and more attention. A common feature of EHR data used for deep-learning-based predictions is historical diagnoses. Existing work mainly regards a diagnosis as an independent disease and does not consider clinical relations among diseases in a visit. Many machine learning approaches assume disease representations are static in different visits of a patient. However, in real practice, multiple diseases that are frequently diagnosed at the same time reflect hidden patterns that are conducive to prognosis. Moreover, the development of amore »disease is not static since some diseases can emerge or disappear and show various symptoms in different visits of a patient. To effectively utilize this combinational disease information and explore the dynamics of diseases, we propose a novel context-aware learning framework using transition functions on dynamic disease graphs. Specifically, we construct a global disease co-occurrence graph with multiple node properties for disease combinations. We design dynamic subgraphs for each patient's visit to leverage global and local contexts. We further define three diagnosis roles in each visit based on the variation of node properties to model disease transition processes. Experimental results on two real-world EHR datasets show that the proposed model outperforms state of the art in predicting health events.« less
  2. Abstract Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and completemore »blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.« less
  3. Digital health technology is becoming more ubiquitous in monitoring individuals’ health as both device functionality and overall prevalence increase. However, as individuals age, challenges arise with using this technology particularly when it involves neurodegenerative issues (e.g., for individuals with Parkinson’s disease, Alzheimer’s disease, and ALS). Traditionally, neurodegenerative diseases have been assessed in clinical settings using pen-and-paper style assessments; however, digital health systems allow for the collection of far more data than we ever could achieve using traditional methods. The objective of this work is the formation and implementation of a neurocognitive digital health system designed to go beyond what pen-and-papermore »based solutions can do through the collection of (a) objective, (b) longitudinal, and (c) symptom-specific data, for use in (d) personalized intervention protocols. This system supports the monitoring of all neurocognitive functions (e.g., motor, memory, speech, executive function, sensory, language, behavioral and psychological function, sleep, and autonomic function), while also providing methodologies for personalized intervention protocols. The use of specifically designed tablet-based assessments and wearable devices allows for the collection of objective digital biomarkers that aid in accurate diagnosis and longitudinal monitoring, while patient reported outcomes (e.g., by the diagnosed individual and caregivers) give additional insights for use in the formation of personalized interventions. As many interventions are a one-size-fits-all concept, digital health systems should be used to provide a far more comprehensive understanding of neurodegenerative conditions, to objectively evaluate patients, and form personalized intervention protocols to create a higher quality of life for individuals diagnosed with neurodegenerative diseases.« less
  4. Reddy, S. ; Winter, J.S. ; Padmanabhan, S. (Ed.)
    AI applications are poised to transform health care, revolutionizing benefits for individuals, communities, and health-care systems. As the articles in this special issue aptly illustrate, AI innovations in healthcare are maturing from early success in medical imaging and robotic process automation, promising a broad range of new applications. This is evidenced by the rapid deployment of AI to address critical challenges related to the COVID-19 pandemic, including disease diagnosis and monitoring, drug discovery, and vaccine development. At the heart of these innovations is the health data required for deep learning applications. Rapid accumulation of data, along with improved data quality,more »data sharing, and standardization, enable development of deep learning algorithms in many healthcare applications. One of the great challenges for healthcare AI is effective governance of these data—ensuring thoughtful aggregation and appropriate access to fuel innovation and improve patient outcomes and healthcare system efficiency while protecting the privacy and security of data subjects. Yet the literature on data governance has rarely looked beyond important pragmatic issues related to privacy and security. Less consideration has been given to unexpected or undesirable outcomes of healthcare in AI, such as clinician deskilling, algorithmic bias, the “regulatory vacuum”, and lack of public engagement. Amidst growing calls for ethical governance of algorithms, Reddy et al. developed a governance model for AI in healthcare delivery, focusing on principles of fairness, accountability, and transparency (FAT), and trustworthiness, and calling for wider discussion. Winter and Davidson emphasize the need to identify underlying values of healthcare data and use, noting the many competing interests and goals for use of health data—such as healthcare system efficiency and reform, patient and community health, intellectual property development, and monetization. Beyond the important considerations of privacy and security, governance must consider who will benefit from healthcare AI, and who will not. Whose values drive health AI innovation and use? How can we ensure that innovations are not limited to the wealthiest individuals or nations? As large technology companies begin to partner with health care systems, and as personally generated health data (PGHD) (e.g., fitness trackers, continuous glucose monitors, health information searches on the Internet) proliferate, who has oversight of these complex technical systems, which are essentially a black box? To tackle these complex and important issues, it is important to acknowledge that we have entered a new technical, organizational, and policy environment due to linked data, big data analytics, and AI. Data governance is no longer the responsibility of a single organization. Rather, multiple networked entities play a role and responsibilities may be blurred. This also raises many concerns related to data localization and jurisdiction—who is responsible for data governance? In this emerging environment, data may no longer be effectively governed through traditional policy models or instruments.« less
  5. Abstract

    Endometriosis is a systemic and chronic condition in women of childbearing age, yet a highly enigmatic disease with unresolved questions: there are no known biomarkers, nor established clinical stages. We here investigate the use of patient-generated health data and data-driven phenotyping to characterize endometriosis patient subtypes, based on their reported signs and symptoms. We aim at unsupervised learning of endometriosis phenotypes using self-tracking data from personal smartphones. We leverage data from an observational research study of over 4000 women with endometriosis that track their condition over more than 2 years. We extend a classical mixed-membership model to accommodate themore »idiosyncrasies of the data at hand, i.e., the multimodality and uncertainty of the self-tracked variables. The proposed method, by jointly modeling a wide range of observations (i.e., participant symptoms, quality of life, treatments), identifies clinically relevant endometriosis subtypes. Experiments show that our method is robust to different hyperparameter choices and the biases of self-tracking data (e.g., the wide variations in tracking frequency among participants). With this work, we show the promise of unsupervised learning of endometriosis subtypes from self-tracked data, as learned phenotypes align well with what is already known about the disease, but also suggest new clinically actionable findings. More generally, we argue that a continued research effort on unsupervised phenotyping methods with patient-generated health data via new mobile and digital technologies will have significant impact on the study of enigmatic diseases in particular, and health in general.

    « less