skip to main content

Title: Discrete action on-policy learning with action-value critic
; ; ;
Award ID(s):
Publication Date:
Journal Name:
International Conference on Artificial Intelligence and Statistics
Sponsoring Org:
National Science Foundation
More Like this
  1. Trigger-Action platforms are web-based systems that enable users to create automation rules by stitching together online services representing digital and physical resources using OAuth tokens. Unfortunately, these platforms introduce a longrange large-scale security risk: If they are compromised, an attacker can misuse the OAuth tokens belonging to a large number of users to arbitrarily manipulate their devices and data. We introduce Decentralized Action Integrity, a security principle that prevents an untrusted trigger-action platform from misusing compromised OAuth tokens in ways that are inconsistent with any given user’s set of trigger-action rules. We present the design and evaluation of Decentralized Trigger-Action Platform (DTAP), a trigger-action platform that implements this principle by overcoming practical challenges. DTAP splits currently monolithic platform designs into an untrusted cloud service, and a set of user clients (each user only trusts their client). Our design introduces the concept of Transfer Tokens (XTokens) to practically use finegrained rule-specific tokens without increasing the number of OAuth permission prompts compared to current platforms. Our evaluation indicates that DTAP poses negligible overhead: it adds less than 15ms of latency to rule execution time, and reduces throughput by 2.5%.
  2. The state-of-the-art of fully-supervised methods for temporal action localization from untrimmed videos has achieved impressive results. Yet, it remains unsatisfactory for the weakly-supervised temporal action localization, where only video-level action labels are given without the timestamp annotation on when the actions occur. The main reason comes from that, the weakly-supervised networks only focus on the highly discriminative frames, but there are some ambiguous frames in both background and action classes. The ambiguous frames in background class are very similar to the real actions, which may be treated as target actions and result in false positives. On the other hand, the ambiguous frames in action class which possibly contain action instances, are prone to be false negatives by the weakly-supervised networks and result in a coarse localization. To solve these problems, we introduce a novel weakly-supervised Action Completeness Modeling with Back- ground Aware Networks (ACM-BANets). Our Background Aware Network (BANet) contains a weight-sharing two-branch architecture, with an action guided Background aware Temporal Attention Module (B-TAM) and an asymmetrical training strategy, to suppress both highly discriminative and ambiguous background frames to remove the false positives. Our action completeness modeling contains multiple BANets, and the BANets are forced to discover different but complementarymore »action instances to completely localize the action instances in both highly discriminative and ambiguous action frames. In the 𝑖-th iteration, the 𝑖-th BANet discovers the discriminative features, which are then erased from the feature map. The partially-erased feature map is fed into the (i+1)-th BANet of the next iteration to force this BANet to discover discriminative features different from the 𝑖-th BANet. Evaluated on two challenging untrimmed video datasets, THUMOS14 and ActivityNet1.3, our approach outperforms all the current weakly-supervised methods for temporal action localization.« less