skip to main content

Title: Reducing Student Resistance to Active Learning: Applying Research Results to Faculty Development
Despite many studies confirming that active learning in STEM classrooms improves student outcomes, instructors’ adoption of active learning has been surprisingly slow. This work-in-progress paper describes our broader research study in which we compare the efficacy of a traditional active learning workshop (AL) and an extended version of this workshop that also specifically highlights instructor strategies to reduce resistance (AL+) on instructors’ beliefs about and actual adoption of active learning in undergraduate STEM classrooms. Through a randomized control trial (RCT), we aim to understand the ways in which these workshops influence instructors’ motivation to adopt and the actual use of active learning. This RCT involves instructors and students at a large number of institutions including two-year college, four-year college, and large research institutions in three regions of the country and strategies to reduce student resistance to active learning. We have developed and piloted three instruments, which allow for triangulation of classroom data: an instructor survey, a student survey, and a classroom observation protocol. This work-in-progress paper will cover the current progress of our research study and present our research instruments.
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1821036
Publication Date:
NSF-PAR ID:
10164780
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite many studies confirming that active learning in STEM classrooms improves student outcomes, instructors’ adoption of active learning has been surprisingly slow. This work-in-progress paper describes our broader research study in which we compare the efficacy of a traditional active learning workshop (AL) and an extended version of this workshop that also specifically highlights instructor strategies to reduce resistance (AL+) on instructors’ beliefs about and actual adoption of active learning in undergraduate STEM classrooms. Through a randomized control trial (RCT), we aim to understand the ways in which these workshops influence instructors’ motivation to adopt and the actual use of active learning. This RCT involves instructors and students at a large number of institutions including two-year college, four-year college, and large research institutions in three regions of the country and strategies to reduce student resistance to active learning. We have developed and piloted three instruments, which allow for triangulation of classroom data: an instructor survey, a student survey, and a classroom observation protocol. This work-in-progress paper will cover the current progress of our research study and present our research instruments.
  2. Despite many studies confirming that active learning in STEM classrooms improves student outcomes, instructors;' adoption of active learning has been surprisingly slow. This work-in-progress paper describes our broader research study in which we compare the efficacy of a traditional active learning workshop (AL) and an extended version of this workshop that also specifically highlights instructor strategies to reduce resistance (AL+) on instructors' beliefs about and actual adoption of active learning in undergraduate STEM classrooms. Through a randomized control trial (RCT), we aim to understand the ways in which these workshops influence instructors' motivation to adopt and the actual use of active learning. This RCT involves instructors and students at a large number of institutions including two-year college, four-year college, and large research institutions in three regions of the country and strategies to reduce student resistance to active learning. We have developed and piloted three instruments, which allow for triangulation of classroom data: an instructor survey, a student survey, and a classroom observation protocol. This work-in-progress paper will cover the current progress of our research study and present our research instruments.
  3. Abstract: Our research has identified strategies instructors can use to reduce student resistance to active learning, and we are developing a workshop intervention to change instructors’ motivation and behaviour related to adoption of active learning and of these strategies. We are using a randomized control trial to assess the impact of the workshop on instructors’ value, self-efficacy, and actual adoption of both active learning and the strategies to reduce resistance. In this paper, we describe our processes for recruiting workshop participants and for developing an instructor survey to assess the impact of the workshop.
  4. Flexible classroom spaces, which have movable tables and chairs that can be easily rearranged into different layouts, make it easier for instructors to effectively implement active learning than a traditional lecture hall. Instructors can move throughout the room to interact with students during active learning, and they can rearrange the tables into small groups to facilitate conversation between students. Classroom technology, such as wall-mounted monitors and movable whiteboards, also facilitates active learning by allowing students to collaborate. In addition to enabling active learning, the flexible classroom can still be arranged in front-facing rows that support traditional lecture-based pedagogies. As a result, instructors do not have to make time- and effort-intensive changes to the way their courses are taught in order to use the flexible classroom. Instead, they can make small changes to add active learning. We are in the second year of a study of flexible classroom spaces funded by the National Science Foundation’s Division of Undergraduate Education. This project asks four research questions that investigate the relationships between the instructor, the students, and the classroom: 1) What pedagogy do instructors use in a flexible classroom space? 2) How do instructors take advantage of the instructional affordances (including the movablemore »furniture, movable whiteboards, wall-mounted whiteboards, and wall-mounted monitors) of a flexible classroom? 3) What is the impact of faculty professional development on instructors’ use of flexible classroom spaces? and 4) How does the classroom influence the ways students interpret and engage in group learning activities? In the first year of our study we have developed five research instruments to answer these questions: a three-part classroom observation protocol, an instructor interview protocol, two instructor surveys, and a student survey. We have collected data from nine courses taught in one of ten flexible classrooms at the University of Michigan during the Fall 2018 semester. Two of these courses were first-year introduction to engineering courses co-taught by two instructors, and the other seven courses were sophomore- and junior-level core technical courses taught by one instructor. Five instructors participated in a faculty learning community that met three times during the semester to discuss active learning, to learn how to make the best use of the flexible classroom affordances, and to plan activities to implement in their courses. In each course we gathered data from the perspective of the instructor (through pre- and post-semester interviews), the researcher (through observations of three class meetings with our observation protocol), and the students (through conducting a student survey at the end of the semester). This poster presents qualitative and qualitative analyses of these data to answer our research questions, along with evidence based best practices for effectively using a flexible classroom.« less
  5. The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited tomore »virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3D-printed miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2-day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the American Society for Engineering Education (ASEE) Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning.« less