skip to main content


Title: Orientational Analysis of Monolayers at Low Surface Concentrations Due to an Increased Signal-to-Noise Ratio (S/N) Using Broadband Sum Frequency Generation Vibrational Spectroscopy
Sum frequency generation (SFG) * Equal contributors. spectroscopy was used to deduce the orientation of the terminal methyl (CH 3 ) group of self-assembled monolayers (SAMs) at the air–solid and air–liquid interfaces at surface concentrations as low as 1% protonated molecules in the presence of 99% deuterated molecules. The SFG spectra of octadecanethiol (ODT) and deuterated octadecanethiol (d 37 ODT) SAMs on gold were used for analysis at the air–solid interface. However, the eicosanoic acid (EA) and deuterated EA (d 39 EA) SAMs on the water were analyzed at the air–liquid interface. The tilt angle of the terminal CH 3 group was estimated to be ∼39 ° for a SAM of 1% ODT : 99% d 37 ODT, whereas the tilt angle of the terminal CH 3 group of the 1% EA : 99% d 39 EA monolayer was estimated to be ∼32 °. The reliability of the orientational analysis at low concentrations was validated by testing the sensitivity of the SFG spectroscopy. A signal-to-noise (S/N) ratio of ∼60 and ∼45 was obtained for the CH 3 symmetric stretch (SS) of 1% ODT : 99% d 37 ODT and 1% EA : 99% d 39 EA, respectively. The estimated increase in S/N ratio values, as a measure of the sensitivity of the SFG spectroscopy, verified the capacity to acquire the SFG spectra at low concentrations of interfacial molecules under ambient conditions. Overall, the orientational analysis of CH 3 SS vibrational mode was feasible at low concentrations of protonated molecules due to increased S/N ratio. In support, the improved S/N ratio on varying incident power density of the visible beam was also experimentally demonstrated.  more » « less
Award ID(s):
1705817
NSF-PAR ID:
10164834
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Spectroscopy
Volume:
73
Issue:
10
ISSN:
0003-7028
Page Range / eLocation ID:
1146 to 1159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ponds play a larger role in the global freshwater methane (CH4) budget than predicted from surface area alone. To improve our understanding of pond CH4dynamics, we measured summer CH4production, concentrations, and emissions to the atmosphere in nine Alaskan wetland ponds along with potential physical, chemical, and biological regulators. Pond CH4production (0.64, 0.086–1.3 mmol m−2d−1; median, interquartile range), as assessed with slurry incubations, was positively related to water‐column temperature and chlorophylla(Chla), negatively influenced by oxygen levels, and varied with microbial community structure. Average water‐column CH4concentrations (0.39, 0.21–0.87 μmol L−1) were lower in deeper ponds and at higher oxygen levels, and as expected, they were correlated with diffusive emissions (0.055, 0.024–0.20 mmol m−2d−1) assessed with flux chambers. Based on a mass balance approach, 39–99% of CH4produced in ponds was oxidized. Pond ebullition (3.7, 0.60–24 mmol m−2d−1) was higher and more variable than diffusive emissions. Additionally, pond ebullition rates were better correlated with production rates from the previous month. We also systematically compared the ratio of ebullition to diffusive CH4emissions in our ponds and other northern lakes, which was negatively related to water depth (n = 71), but positively related to Chla (n = 28). Our study sheds light on the factors that influence pond CH4dynamics and demonstrates that pond ebullition is a significant CH4source worthy of continued study.

     
    more » « less
  2. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. 
    more » « less
  3. A s a c om pl e men t t o da ta d edupli cat ion , de lta c om p ress i on fu r- t he r r edu c es t h e dat a vo l u m e by c o m pr e ssi n g n o n - dup li c a t e d ata chunk s r e l a t iv e to t h e i r s i m il a r chunk s (bas e chunk s). H ow ever, ex is t i n g p o s t - d e dup li c a t i o n d e l t a c o m pr e ssi o n a p- p ro a ches fo r bac kup s t or ag e e i t h e r su ffe r f ro m t h e l ow s i m - il a r i t y b e twee n m any de te c ted c hun ks o r m i ss so me po t e n - t i a l s i m il a r c hunks , o r su ffer f r om l ow (ba ckup and r es t ore ) th r oug hpu t du e t o extr a I/ Os f or r e a d i n g b a se c hun ks o r a dd a dd i t i on a l s e r v i c e - d i s r up t ive op e r a t i on s to b a ck up s ys t em s. I n t h i s pa p e r, w e pr opo se L oop D e l t a t o a dd ress the above - m e n t i on e d prob l e m s by an e nha nced em b e ddi n g d e l t a c o m p - r e ss i on sc heme i n d e dup li c a t i on i n a non - i n t ru s ive way. T h e e nha nce d d elt a c o mpr ess ion s che m e co m b in e s f our key t e c h - ni qu e s : (1) du a l - l o c a li t y - b a s e d s i m il a r i t y t r a c k i n g to d e t ect po t e n t i a l si m il a r chun k s b y e x p l o i t i n g both l o g i c a l and ph y - s i c a l l o c a li t y, ( 2 ) l o c a li t y - a wa r e pr e f e t c h i n g to pr efe tc h ba se c hun ks to a vo i d ex t ra I/ Os fo r r e a d i n g ba s e chun ks on t h e w r i t e p at h , (3) c a che -aware fil t e r to avo i d ext r a I/Os f or b a se c hunk s on t he read p at h, a nd (4) i nver sed de l ta co mpressi on t o perf orm de lt a co mpress i o n fo r d at a chunk s t hat a re o th e r wi se f o r b i dd e n to s er ve as ba se c hunk s by r ew r i t i n g t e c hn i qu e s d e s i g n e d t o i m p r ove r es t o re pe rf o rma nc e. E x p e r i m e n t a l re su lts indi ca te t hat L oop D e l t a i ncr ea se s t he c o m pr e ss i o n r a t i o by 1 .2410 .97 t i m e s on t op of d e dup li c a - t i on , wi t hou t no t a b l y a ffe c t i n g th e ba ck up th rou ghpu t, a nd i t i m p r ove s t he res to re p er fo r m an ce b y 1.23.57 t i m e 
    more » « less
  4. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3 ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3 and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 =  0.78), carbon dioxide (CO2, r2 =  0.78), and methane (CH4, r2 =  0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality. 
    more » « less
  5. null (Ed.)
    Polymer chain diffusion within a hydrated polyelectrolyte complex, PEC, has been measured using an ultrathin film format prepared by the layer-by-layer method. Isotopically labeled self-exchange of deuterated poly(styrene sulfonate), dPSS, with undeuterated PSS of the same narrow molecular weight distribution permitted reliable estimates of whole-molecule diffusion coefficients, D. Narrow molecular weight distribution poly(diallyldimethylammonium), PDADMA, was used as the polycation for the PEC. Extensive pretreatment of starting films was undertaken to remove residual stress, anisotropy, and layering. PSS/PDADMA “multilayers,” PEMUs, thin enough to provide substantial exchange of polyelectrolyte, even with diffusion coefficients as low as 10–16 cm2 s–1, as a function of salt concentration and temperature were measured for this PEC, which has a glass-transition temperature, Tg, close to room temperature. Two molecular weights of dPSS, about 15 and 100 kDa, presumed to be below and above the entanglement molecular weight, respectively, both diffused faster at higher temperatures with respective activation energies, Ea, of about 21 and 53 kJ mol–1, the latter about the same as Ea for the place exchange between two pairs of PSS:PDADMA. Studies of the linear viscoelastic response of macroscopic PECs showed a difference of about 8 °C in the Tg of the two lengths of PSS complexed with the same PDADMA. Increasing concentrations of NaCl influenced D of 100 kDa PSS but not 15 kDa PSS at room temperature. D was faster in the region of the film near the solution interface, again attributed to a lower Tg caused by greater water content at this interface. 
    more » « less