skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Reaction of Coordinated Sulfoxides: Facile and Highly Diastereoselective Deprotonation of a Chiral, Cationic Rhenium DMSO Complex to an Ylide and Subsequent [1,2] Migration of Rhenium from Sulfur to Carbon
Award ID(s):
9408980
PAR ID:
10164988
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Organometallics
Volume:
14
Issue:
4
ISSN:
0276-7333
Page Range / eLocation ID:
1844 to 1849
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A systematic electrochemical study is carried out on electrolytes with superhigh concentrations of fructose. The effect of fructose concentration on the viscosity and conductivity of electrolyte are determined and analyzed using Walden rule and the theory of rate process. The diffusion rates of proton and cupric cation are calculated from the peak current in cyclic voltammogram on stationary electrode and the limiting current on rotating electrodes. Raman spectroscopy is used to characterize the hydrogen bond network in water and the effect of fructose concentration on such network. Rhenium deposition with different fructose concentrations is studied on rotating disc electrodes. X-ray fluorescence, X-ray diffraction, and four point probe measurements at cryogenic temperature are used to study the deposition rate, crystallographic structure, and superconductivity of film, respectively. 
    more » « less
  2. Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N 2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium( iii ) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH 2 ) 2 Cl] + , or results in dehydrohalogenation to the rhenium( iii ) amido complex, (PNP)Re(NH 2 )Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol −1 , while DFT computations indicate a substantially weaker N–H bond of the putative rhenium( iv )-imide intermediate (BDE = 38 kcal mol −1 ). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH 3 generation. 
    more » « less
  3. null (Ed.)