skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Spectroscopic X-ray and Mössbauer Characterization of M 6 and M 5 Iron(Molybdenum)-Carbonyl Carbide Clusters: High Carbide-Iron Covalency Enhances Local Iron Site Electron Density Despite Cluster Oxidation
Award ID(s):
1808311
PAR ID:
10165124
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
58
Issue:
19
ISSN:
0020-1669
Page Range / eLocation ID:
12918 to 12932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We conducted shock wave experiments on iron carbide Fe3C up to a Hugoniot pressure of 245 GPa. The correlation between the particle velocity (up) and shock wave velocity (us) can be fitted into a linear relationship,us= 4.627(±0.073) + 1.614(±0.028)up. The density‐pressure relationship is consistent with a single‐phase compression without decomposition. The inference is further supported by the comparison of the observed Hugoniot density with the calculated Hugoniot curves of possible decomposition products. The new Hugoniot data combined with the reported 300‐K isothermal compression data yielded a Grüneisen parameter ofγ= 2.23(7.982/ρ)0.29. The thermal equation of state of Fe3C is further used to calculate the density profile of Fe3C along the Earth's adiabatic geotherm. The density of Fe3C was found to be too low (by ~5%) to match the observed density in the Earth's inner core, and Fe3C is unlikely a dominant component of the inner core. 
    more » « less
  2. We report the reactivity, structures and spectroscopic characterization of reactions of phosphine-based ligands (mono-, di- and tri-dentate) with iron-carbide-carbonyl clusters. 
    more » « less