skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: North American Winter Dipole: Observed and Simulated Changes in Circulations
In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations.  more » « less
Award ID(s):
1903721
PAR ID:
10165147
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
10
Issue:
12
ISSN:
2073-4433
Page Range / eLocation ID:
793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300 hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud–radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid- to high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes. 
    more » « less
  2. Abstract An intermediate-complexity general circulation model is used to disentangle changes in the large-scale zonally asymmetric circulation in response to rising greenhouse gases. Particular focus is on the anomalous ridge that develops over the Mediterranean in future climate projections, directly associated with reduced winter precipitation over the region. Specifically, we examine changes in stationary waves forced by land–sea contrast, horizontal oceanic heat fluxes, and orography, following a quadrupling of CO2. The stationary waves associated with these three drivers depend strongly on the climatological state, precluding a linear decomposition of their responses to warming. However, our modeling framework still allows a process-oriented approach to quantify the key drivers and mechanisms of the response. A combination of three similarly important mechanisms is found responsible for the rain-suppressing ridge. The first is part of a global response to warming: elongation of intermediate-scale stationary waves in response to strengthened subtropical winds aloft, previously found to account for hydroclimatic changes in southwestern North America. The second is regional: a downstream response to the North Atlantic warming hole and enhanced warming of the Eurasian landmass relative to the Atlantic Ocean. A third contribution to the Mediterranean Ridge is a phase shift of planetary wave 3, primarily associated with an altered circulation response to orographic forcing. Reduced land–sea contrast in the Mediterranean basin, previously thought to contribute substantially to Mediterranean drying, has a negligible effect in our integrations. This work offers a mechanistic analysis of the large-scale processes governing projected Mediterranean drying, lending increased understanding and credibility to climate model projections. 
    more » « less
  3. Abstract Under increasing greenhouse gases, the Arctic warms about twice as fast as elsewhere, known as Arctic amplification (AA). AA weakens meridional temperature gradients and is hypothesized to weaken zonal wind and cause wavier circulation with stronger meridional wind ( υ ) over northern mid-to-high latitudes. Here model simulations are analyzed to examine the υ response to increased CO 2 and AA alone. Total υ changes are found to be dominated by the effect of increased CO 2 without AA, with a zonal wavenumber-4 (wavenumber-3) change pattern over the northern (southern) extratropics that generally enhances current υ and results partly from changes in zonal temperature gradients. The extratropical υ change patterns are quasi-barotropic and are more pronounced during boreal winter. The CO 2 forcing also causes baroclinic υ changes over the tropics tied to convection changes. The impact of AA on υ is mainly over the northern extratropics and is opposite to the effect of increased CO 2 but with smaller magnitude. An eastward shift (∼5° longitude) and an amplitude increase (∼1 m s −1 ) in the climatology of the northerlies over Europe caused mainly by CO 2 forcing contribute to the drying in southern Europe, while both AA and CO 2 forcing enhance the climatology of the northerlies over East Asia. Over the northern mid-to-high latitudes, Arctic sea ice loss and AA enhance the land–ocean thermal contrast in winter, while increased CO 2 alone weakens it, resulting in opposite changes in zonal temperature gradients and thus υ . Different warming rates over land and ocean also contribute to the intermodel spread in υ response patterns among climate models. Significance Statement Meridional wind ( υ ) greatly contributes to thermal and moisture advection due to large meridional gradients in these fields. It is hypothesized that the enhanced Arctic warming under anthropogenic global warming could weaken meridional temperature gradients, decelerate westerly jets, and cause wavier circulation with stronger υ over northern extratropics. Using novel climate model simulations, we found that the effect of increased CO 2 without AA determines the total υ changes. AA generally weakens the climatological υ , contrary to the direct effect of increased CO 2 . The υ changes are small relative to its climatology but may have large impacts on regional climate over central Europe, East Asia, and interior North America. More research is needed to examine the mechanisms causing regional υ changes. 
    more » « less
  4. In the past decade, dynamical downscaling using “pseudo‐global‐warming” (PGW) techniques has been applied frequently to project regional climate change. Such techniques generate signals by adding mean global climate model (GCM)‐simulated climate change signals in temperature, moisture, and circulation to lateral and surface boundary conditions derived from reanalysis. An alternative to PGW is to downscale GCM data directly. This technique should be advantageous, especially for simulation of extremes, since it incorporates the GCM's full spectrum of changing synoptic‐scale dynamics in the regional solution. Here, we test this assumption, by comparing simulations in Europe and Western North America. We find that for warming and changes in temperature extremes, PGW often produces similar results to direct downscaling in both regions. For mean and extreme precipitation changes, PGW generally also performs surprisingly well in many cases. Moisture budget analysis in the Western North America domain reveals why. Large fractions of the downscaled hydroclimate changes arise from mean changes in large‐scale thermodynamics and circulation, that is, increases in temperature, moisture, and winds, included in PGW by design. The one component PGW may have difficulty with is the contribution from changes in synoptic‐scale variability. When this component is large, PGW performance could be degraded. Global analysis of GCM data shows there are regions where it is large or dominant. Hence, our results provide a road map to identify, through GCM analyses, the circumstances when PGW would not be expected to accurately regionalize GCM climate signals. 
    more » « less
  5. null (Ed.)
    Abstract The leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “Warm Arctic, Cold Continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific Mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi- Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region. 
    more » « less