skip to main content


Title: Adaptive optics approach to surface-enhanced Raman scattering

Surface-enhanced Raman scattering (SERS) spectroscopy is a popular technique for detecting chemicals in small quantities. Rough metallic surfaces with nanofeatures are some of the most widespread and commercially successful substrates for efficient SERS measurements. A rough metallic surface creates a high-density random distribution of so-called “hot spots” with local optical field enhancement causing Raman signal to increase. In this Letter, we revisit the classic SERS experiment [Surf. Sci.158,229(1985)SUSCAS0039-602810.1016/0039-6028(85)90297-3] with rough metallic surfaces covered by a thin layer of copper phthalocyanine molecules. As a modification to the classic configuration, we apply an adaptive wavefront correction of a laser beam profile. As a result, we demonstrate an increase in brightness of local SERS hot spots and redistribution of Raman signal over the substrate area. We hypothesize that the improvement is due to optimal coupling of the shaped laser beam to the random plasmonic nanoantenna configurations. We show that the proposed adaptive-SERS modification is independent of the exact structure of the surface roughness and topography, works with many rough surfaces, and gives brighter Raman hot spots in comparison with conventional SERS measurements. We prove that the adaptive SERS is a powerful instrument for improving SERS sensitivity.

 
more » « less
NSF-PAR ID:
10165206
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
13
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 3709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically increases the correlation length, in support of our recent hypothesis [Phys. Rev. B108,144434(2023)2469-995010.1103/PhysRevB.108.144434] that coupling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract doublon-hole correlation length.

     
    more » « less
  2. We proposed the use of relative encircled power as a measure of focusing efficiency [Optica7,252(2020)OPTIC82334-253610.1364/OPTICA.388697]. The comment [Optica8,1009(2021)OPTIC82334-253610.1364/OPTICA.416017] has raised useful questions, which we address briefly here and provide some clarifications.

     
    more » « less
  3. In Parts I [Appl. Opt.58,6067(2019)APOPAI0003-693510.1364/AO.58.006067] and II [Appl. Opt.61,10049(2022)APOPAI0003-693510.1364/AO.474920], we used a coupled optoelectronic model to optimize a thin-film CIGS solar cell with a graded-bandgap photon-absorbing layer, periodically corrugated backreflector, and multilayered antireflection coatings. Bandgap grading of the CIGS photon-absorbing layer was continuous and either linear or nonlinear, in the thickness direction. Periodic corrugation and multilayered antireflection coatings were found to engender slight improvements in the efficiency. In contrast, bandgap grading of the CIGS photon-absorbing layer leads to significant enhancement of efficiency, especially when the grading is continuous and nonlinear. However, practical implementation of continuous nonlinear grading is challenging compared to piecewise-homogeneous grading. Hence, for this study, we investigated piecewise-homogeneous approximations of the optimal linear and nonlinear grading profiles, and found that an equivalent efficiency is achieved using piecewise-homogeneous grading. An efficiency of 30.15% is predicted with a three-layered piecewise-homogeneous CIGS photon-absorbing layer. The results will help experimentalists to implement optimal designs for highly efficient CIGS thin-film solar cells.

     
    more » « less
  4. In Part I [Appl. Opt.59,1018(2020).APOPAI0003-693510.1364/AO.381246], we used a coupled optoelectronic model to optimize a thin-film AlGaAs solar cell with a graded-bandgap photon-absorbing layer and a periodically corrugated Ag backreflector combined with localized ohmic Pd–Ge–Au backcontacts, because both strategies help to improve the performance of AlGaAs solar cells. However, the results in Part I were affected by a normalization error, which came to light when we replaced the hybridizable discontinuous Galerkin scheme for electrical computation by the faster finite-difference scheme. Therefore, we re-optimized the solar cells containing ann-AlGaAs photon-absorbing layer with either a (i) homogeneous, (ii) linearly graded, or (iii) nonlinearly graded bandgap. Another way to improve the power conversion efficiency is by using a surface antireflection texturing on the wavelength scale, so we also optimized four different types of 1D periodic surface texturing: (i) rectangular, (ii) convex hemi-elliptical, (iii) triangular, and (iv) concave hemi-elliptical. Our new results show that the optimal nonlinear bandgap grading enhances the efficiency by as much as 3.31% when then-AlGaAs layer is 400 nm thick and 1.14% when that layer is 2000 nm thick. A hundredfold concentration of sunlight can enhance the efficiency by a factor of 11.6%. Periodic texturing of the front surface on the scale of 0.5–2 free-space wavelengths provides a small relative enhancement in efficiency over the AlGaAs solar cells with a planar front surface; however, the enhancement is lower when then-AlGaAs layer is thicker.

     
    more » « less
  5. The classical analogues of quantum correlations have been the subject of considerable interest in the past few years; however, all of these investigations consider the classical analogue of only pure quantum mechanical states. In this work, we studymixedclassical light states and derive relations between the polarization coherence of the field and the (classical) entanglement between its degrees of freedom. We show, for a specific model of mixed states, where the purity is determined by a single parameter, how the coherence shared between polarization and entanglement shrinks as the level of purity decreases. The sum of the square of polarization and entanglement remains constant, a behavior consistent with previous results [Phys. Rev. Lett.117,153901(2016)PRLTAO0031-900710.1103/PhysRevLett.117.153901] of pure states, even though the constant for the mixed-state case is now smaller in value.

     
    more » « less