This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects aect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties.From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their eects are magnified in semiconductor nanostructures so that their electronic eects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics.
more »
« less
Defect Characterization, Imaging, and Control in Wide Band Gap Semiconductors and Devices
Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.
more »
« less
- Award ID(s):
- 1800130
- PAR ID:
- 10165352
- Date Published:
- Journal Name:
- Journal of electronic materials
- Volume:
- 47
- ISSN:
- 0361-5235
- Page Range / eLocation ID:
- 4980-4986
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Establishing connections between material impurities and charge transport properties in emerging electronic and quantum materials, such as wide‐bandgap semiconductors, demands new diagnostic methods tailored to these unique systems. Many such materials host optically‐active defect centers which offer a powerful in situ characterization system, but one that typically relies on the weak spin‐electric field coupling to measure electronic phenomena. In this work, charge‐state sensitive optical microscopy is combined with photoelectric detection of an array of nitrogen‐vacancy (NV) centers to directly image the flow of charge carriers inside a diamond optoelectronic device, in 3D and with temporal resolution. Optical control is used to change the charge state of background impurities inside the diamond on‐demand, resulting in drastically different current flow such as filamentary channels nucleating from specific, defective regions of the device. Conducting channels that control carrier flow, key steps toward optically reconfigurable, wide‐bandgap optoelectronics are then engineered using light. This work might be extended to probe other wide‐bandgap semiconductors (SiC, GaN) relevant to present and emerging electronic and quantum technologies.more » « less
-
Ultrawide bandgap semiconductors (UWBGs) provide great promise for optical devices operating in the near to deep ultraviolet, and recently they have become a viable semiconducting material for high power electronics. From the power grid to electronic vehicles, the intention is to replace massively awkward components with the convenience of a solid state electronic “chip.” Unfortunately, the challenges faced by wide bandgap electronic materials, such as GaN and SiC, increase as the bandgap increases. A point defect, for example, can take on more charge states and energy configurations. This perspective describes a method to investigate the many charge states and their associated transitions—photo-induced electron paramagnetic resonance (photo-EPR) spectroscopy. Although not new to the study of defects in semiconductors, photo-EPR studies can probe the entire ultrawide bandgap given the appropriate light source for excitation. Examples provided here cover specific defects in UWBGs, AlN, and Ga2O3. The discussion also reminds us how the rapid pace of discovery surrounding this newest class of semiconductors is due, in part, to fundamental research studies of the past, some as far back as a century ago and some based on very different materials systems.more » « less
-
Abstract Optically active point defects in wide‐bandgap semiconductors have been demonstrated to be attractive for a variety of quantum and nanoscale applications. In particular, color centers in hexagonal boron nitride (hBN) have recently gained substantial attention owing to their spectral tunability, brightness, stability, and room‐temperature operation. Despite all of the recent studies, precise detection of the defect‐induced mid‐gap electronic states (MESs) and their simultaneous correlations with the observed emission in hBN remain elusive. Directly probing these MESs provides a powerful approach toward atomic identification and optical control of the defect centers underlying the sub‐bandgap emission in hBN. Combining optical and electron spectroscopy, the existence of mid‐gap absorptive features is revealed at the emissive sites in hBN, along with an atom‐by‐atom identification of the underlying defect configuration. The atomically resolved defect structure, primarily constituted by vacancies and carbon/oxygen substitutions, is further studied via first‐principles calculations, which support the correlation with the observed MESs through the electronic density of states. This work provides a direct relationship between the observed visible emission in hBN, the underlying defect structure, and its absorptive MESs, opening venues for atomic‐scale and optical control in hBN for quantum technology.more » « less
-
Abstract 2D van der Waals (vdW) materials are emerging as the next generation platform for optical and electronic devices with their wide coverage of the energy bandgaps. The strong light–matter interactions in 2D vdW layers allow for exploring novel optical and electronic phenomena such as 2D polaritons exhibiting ultrahigh field confinement, defects‐induced new quantum states, and strain‐modulated quantum confinement of 2D excitons. Far‐field optical imaging techniques are extensively used to characterize the 2D vdW materials so far, however, subdiffraction spatial resolution is required for comprehensive investigations of 2D vdW materials of which physical properties are greatly influenced by local defects and strain. This article aims to cover historical advances, fundamental principles, and distinct features of emerging near‐field optical imaging techniques: scattering‐type scanning near‐field optical microscopy, tip‐enhanced Raman spectroscopy, tip‐enhanced photoluminescence techniques, and photo‐induced force microscopy. The recent developments toward spectroscopic analysis of near‐field imaging and applications for unveiling unique properties of 2D polaritons, nanoscale defects, and mechanical strains in 2D vdW materials, are also discussed. This review article provides an understanding of emerging near‐field imaging techniques and suggests prospective applications for exploring 2D vdW materials.more » « less
An official website of the United States government

