skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Imaging Quantum Vortices in Superfluid Helium Droplets
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.  more » « less
Award ID(s):
1664990 1701077
NSF-PAR ID:
10165381
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Physical Chemistry
Volume:
70
Issue:
1
ISSN:
0066-426X
Page Range / eLocation ID:
173 to 198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The motion of quantized vortices is responsible for many intriguing phenomena in diverse quantum-fluid systems. Having a theoretical model to reliably predict the vortex motion therefore promises a broad significance. But a grand challenge in developing such a model is to evaluate the dissipative force caused by thermal quasiparticles in the quantum fluids scattering off the vortex cores. Various models have been proposed, but it remains unclear which model describes reality due to the lack of comparative experimental data. Here we report a visualization study of quantized vortex rings propagating in superfluid helium. By examining how the vortex rings spontaneously decay, we provide decisive data to identify the model that best reproduces observations. This study helps to eliminate ambiguities about the dissipative force acting on vortices, which could have implications for research in various quantum-fluid systems that also involve similar forces, such as superfluid neutron stars and gravity-mapped holographic superfluids.

     
    more » « less
  2. This chapter aims to look at the properties of large helium nanodroplets from two different perspectives: a.) helium droplets as hosts for assembling and studying clusters at low temperatures; and b.) helium droplets as systems to be studied on their own. First, the thermodynamics and excitations in large droplets are presented, followed by a primer on the droplets’ rate of cooling in vacuum. The chapter then proceeds with the description on producing and characterising the droplets. This subject is followed by a discussion on the kinetics for different regimes of cluster aggregation, such as that for single- and multiple-centre aggregation. Then, experiments involving the spectroscopy of the foreign particles and the deposition of metallic clusters for electron microscopy studies are described. Finally, results from recent x-ray coherent diffractive imaging experiments with pure and doped helium nanodroplets are summarised. 
    more » « less
  3. Generic scaling laws, such as Kolmogorov’s 5/3 law, are milestone achievements of turbulence research in classical fluids. For quantum fluids such as atomic Bose–Einstein condensates, superfluid helium, and superfluid neutron stars, turbulence can also exist in the presence of a chaotic tangle of evolving quantized vortex lines. However, due to the lack of suitable experimental tools to directly probe the vortex-tangle motion, so far little is known about possible scaling laws that characterize the velocity correlations and trajectory statistics of the vortices in quantum-fluid turbulence, i.e., quantum turbulence (QT). Acquiring such knowledge could greatly benefit the development of advanced statistical models of QT. Here we report an experiment where a tangle of vortices in superfluid4He are decorated with solidified deuterium tracer particles. Under experimental conditions where these tracers follow the motion of the vortices, we observed an apparent superdiffusion of the vortices. Our analysis shows that this superdiffusion is not due to Lévy flights, i.e., long-distance hops that are known to be responsible for superdiffusion of random walkers. Instead, a previously unknown power-law scaling of the vortex–velocity temporal correlation is uncovered as the cause. This finding may motivate future research on hidden scaling laws in QT.

     
    more » « less
  4. The generation and evolution of entanglement in many-body systems is an active area of research that spans multiple fields, from quantum information science to the simulation of quantum many-body systems encountered in condensed matter, subatomic physics, and quantum chemistry. Motivated by recent experiments exploring quantum information processing systems with electrons trapped above the surface of cryogenic noble gas substrates, we theoretically investigate the generation of entanglement between two electrons via their unscreened Coulomb interaction. The model system consists of two electrons confined in separate electrostatic traps that establish microwave-frequency quantized states of their motion. We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis. We also compare our results with the predictions of an effective Hamiltonian. The computational procedure outlined here can be employed for device design and guidance of experimental implementations. In particular, the theoretical tools developed here can be used for fine-tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon. 
    more » « less
  5. null (Ed.)
    Abstract The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1  μ m high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel. 
    more » « less