skip to main content


Title: A 7.7~10.3GHz 5.2mW -247.3dB-FOM Fractional-N Reference Sampling PLL with 2nd Order CDAC Based Fractional Spur Cancellation In 45nm CMOS
Award ID(s):
1821819
NSF-PAR ID:
10165544
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE Custom Integrated Circuits Conference (CICC)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues.In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain.We base on the analysis to develop a spectral-Galerkin Levenberg–Marquardt method and a finite difference Levenberg–Marquardt method to numerically invert the variable order.We carry out numerical experiments to investigate the numerical performance of these methods. 
    more » « less