skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Atomic-Level Understanding of Surface Reconstruction Based on Li[Ni x Mn y Co 1–x–y ]O 2 Single-Crystal Studies
Award ID(s):
1805938
PAR ID:
10165597
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Energy Materials
Volume:
3
Issue:
5
ISSN:
2574-0962
Page Range / eLocation ID:
4799 to 4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A ternary derivative of Li 3 Bi with the composition Li 3– x – y In x Bi ( x  ≃ 0.14, y  ≃ 0.29) was produced by a mixed In+Bi flux approach. The crystal structure adopts the space group Fd \overline{3} m (No. 227), with a = 13.337 (4) Å, and can be viewed as a 2 × 2 × 2 superstructure of the parent Li 3 Bi phase, resulting from a partial ordering of Li and In in the tetrahedral voids of the Bi fcc packing. In addition to the Li/In substitutional disorder, partial occupation of some Li sites is observed. The Li deficiency develops to reduce the total electron count in the system, counteracting thereby the electron doping introduced by the In substitution. First-principles calculations confirm the electronic rationale of the observed disorder. 
    more » « less