skip to main content


Title: Experiential Learning: Case Study-Based Portable Hands-on Regression Labware for Cyber Fraud Prediction
Machine Learning (ML) analyzes, and processes data and discover patterns. In cybersecurity, it effectively analyzes big data from existing cybersecurity attacks and develop proactive strategies to detect current and future cybersecurity attacks. Both ML and cybersecurity are important subjects in computing curriculum, but using ML for cybersecurity is not commonly explored. This paper designs and presents a case study-based portable labware experience built on Google's CoLaboratory (CoLab) for a ML cybersecurity application to provide students with hands-on labs accessing from anywhere and anytime, reducing or eliminating tedious installations and configurations. This approach allows students to focus on learning essential concepts and gaining valuable experience through hands-on problem solving skills. Our preliminary results and student evaluations are reported for a case-based hands-on regression labware in cyber fraud prediction using credit card fraud as an example.  more » « less
Award ID(s):
1723578 1723586
NSF-PAR ID:
10165655
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
5814 to 5818
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine Learning (ML) analyzes, and processes data and develop patterns. In the case of cybersecurity, it helps to better analyze previous cyber attacks and develop proactive strategy to detect and prevent the security threats. Both ML and cybersecurity are important subjects in computing curriculum, but ML for cybersecurity is not well presented there. We design and develop case-study based portable labware on Google CoLab for ML to cybersecurity so that students can access and practice these hands-on labs anywhere and anytime without time tedious installation and configuration which will help students more focus on learning of concepts and getting more experience for hands-on problem solving skills. 
    more » « less
  2. Machine Learning (ML) analyze, and process data and develop patterns. In the case of cybersecurity, it helps to better analyze previous cyber attacks and develop proactive strategy to detect, prevent the security threats. Both ML and cybersecurity are important subjects in computing curriculum but ML for security is not well presented there. We design and develop case-study based portable labware on Google CoLab for ML to cybersecurity so that students can access, share, collaborate, and practice these hands-on labs anywhere and anytime without time tedious installation and configuration which will help students more focus on learning of concepts and getting more experience for hands-on problem solving skills. 
    more » « less
  3. The primary goal of the authentic learning approach is to engage and motivate students in learning real world problem solving. We report our experience in developing k-nearest neighbor (KNN) classification for anomaly user behavior detection, one of the authentic machine learning for cybersecurity (ML4Cybr) learning modules based on 10 cybersecurity (CybrS) cases with machine learning (ML) solutions. All portable labs are made available on Google CoLab. So students can access and practice these hands-on labs anywhere and anytime without software installation and configuration which will engage students in learning concepts immediately and getting more experience for hands-on problem solving skills. 
    more » « less
  4. Hands-on practice is a critical component of cybersecurity education. Most of the existing hands-on exercises or labs materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. With the advantages of big data and natural language processing (NLP) technologies, constructing a large knowledge graph and mining concepts from unstructured text becomes possible, which motivated us to construct a machine learning based lab exercising plan for cybersecurity education. In the research presented by this paper, we have constructed a knowledge graph in the cybersecurity domain using NLP technologies including machine learning based word embedding and hyperlink-based concept mining. We then utilized the knowledge graph during the regular learning process based on the following approaches: 1. We constructed a web-based front-end to visualize the knowledge graph, which allows students to browse and search cybersecurity-related concepts and the corresponding interdependence relations; 2. We created a personalized knowledge graph for each student based on their learning progress and status; 3.We built a personalized lab recommendation system by suggesting more relevant labs based on students’ past learning history to maximize their learning outcomes. To measure the effectiveness of the proposed solution, we have conducted a use case study and collected survey data from a graduate-level cybersecurity class. Our study shows that, by leveraging the knowledge graph for the cybersecurity area study, students tend to benefit more and show more interests in cybersecurity area. 
    more » « less
  5. The NTT (Nippon Telegraph and Telephone) Data Corporation report found that 80% of U.S. consumers are concerned about their smart home data security. The Internet of Things (IoT) technology brings many benefits to people's homes, and more people across the world are heavily dependent on the technology and its devices. However, many IoT devices are deployed without considering security, increasing the number of attack vectors available to attackers. Numerous Internet of Things devices lacking security features have been compromised by attackers, resulting in many security incidents. Attackers can infiltrate these smart home devices and control the home via turning off the lights, controlling the alarm systems, and unlocking the smart locks, to name a few. Attackers have also been able to access the smart home network, leading to data exfiltration. There are many threats that smart homes face, such as the Man-in-the-Middle (MIM) attacks, data and identity theft, and Denial of Service (DoS) attacks. The hardware vulnerabilities often targeted by attackers are SPI, UART, JTAG, USB, etc. Therefore, to enhance the security of the smart devices used in our daily lives, threat modeling should be implemented early on in developing any given system. This past Spring semester, Morgan State University launched a (senior) capstone project targeting undergraduate (electrical) engineering students who were thus allowed to research with the Cybersecurity Assurance and Policy (CAP) center for four months. The primary purpose of the capstone was to help students further develop both hardware and software skills while researching. For this project, the students mainly focused on the Arduino Mega Board. Some of the expected outcomes for this capstone project include: 1) understanding the physical board components, 2) learning how to attack the board through the STRIDE technique, 3) generating a Data Flow Diagram (DFD) of the system using the Microsoft threat modeling tool, 4) understanding the attack patterns, and 5) generating the threat based on the user's input. To prevent future threats and attacks from taking advantage of systems vulnerabilities, the practice of "threat modeling" is implemented. This method allows the analysis of potential attackers, including their goals and techniques, while also providing solutions and mitigation strategies. Although Threat modeling can be performed throughout the development of a system, implementing it during developmental stages will prevent further problems in the future. Threat Modeling is crucial because it will help identify any potential threat before it propagates in the system. Identifying threats and providing countermeasures will save both time and money while also keeping the consumers safe. As a result, students must grow to understand how essential detecting and preventing attacks are to protect consumer information systems and networks. At the end of this capstone project, students should take away hands-on skills in cyber defense. 
    more » « less