skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Personalized Fall Detection System
This paper explores the personalization of smartwatch-based fall detection models trained using a combination of deep neural networks with ensemble techniques. Deep neural networks face practical challenges when used for fall detection, which in general tend to have limited training samples and imbalanced datasets. Moreover, many motions generated by a wrist-worn watch can be mistaken for a fall. Obtaining a large amount of real-world labeled fall data is impossible as fall is a rare event. However, it is easy to collect a large number of non-fall data samples from users. In this paper, we aim to mitigate the scarcity of training data in fall detection by first training a generic deep learning ensemble model, optimized for high recall, and then enhancing the precision of the model, by collecting personalized false positive samples from individual users, via feedback from the SmartFall App. We performed real-world experiments with five volunteers and concluded that a personalized fall detection model significantly outperforms generic fall detection models, especially in terms of precision. We further validated the performance of personalization by using a new metric for evaluating the accuracy of the model via normalizing false positive rates with regard to the number of spikes of acceleration over time.  more » « less
Award ID(s):
1757893
PAR ID:
10165816
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
5th IEEE PerCom Workshop on Pervasive Health Technologies
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications. 
    more » « less
  2. The majority of current smart health applications are deployed on a smartphone paired with a smartwatch. The phone is used as the computation platform or the gateway for connecting to the cloud while the watch is used mainly as the data sensing device. In the case of fall detection applications for older adults, this kind of setup is not very practical since it requires users to always keep their phones in proximity while doing the daily chores. When a person falls, in a moment of panic, it might be difficult to locate the phone in order to interact with the Fall Detection App for the purpose of indicating whether they are fine or need help. This paper demonstrates the feasibility of running a real-time personalized deep-learning-based fall detection system on a smartwatch device using a collaborative edge-cloud framework. In particular, we present the software architecture we used for the collaborative framework, demonstrate how we automate the fall detection pipeline, design an appropriate UI on the small screen of the watch, and implement strategies for the continuous data collection and automation of the personalization process with the limited computational and storage resources of a smartwatch. We also present the usability of such a system with nine real-world older adult participants. 
    more » « less
  3. Early detection of wildfire smoke in real-time is essentially important in forest surveillance and monitoring systems. We propose a vision-based method to detect smoke using Deep Convolutional Generative Adversarial Neural Networks (DC-GANs). Many existing supervised learning approaches using convolutional neural networks require substantial amount of labeled data. In order to have a robust representation of sequences with and without smoke, we propose a two-stage training of a DCGAN. Our training framework includes, the regular training of a DCGAN with real images and noise vectors, and training the discriminator separately using the smoke images without the generator. Before training the networks, the temporal evolution of smoke is also integrated with a motion-based transformation of images as a pre-processing step. Experimental results show that the proposed method effectively detects the smoke images with negligible false positive rates in real-time. 
    more » « less
  4. When learning from streaming data, a change in the data distribution, also known as concept drift, can render a previously-learned model inaccurate and require training a new model. We present an adaptive learning algorithm that extends previous drift-detection-based methods by incorporating drift detection into a broader stable-state/reactive-state process. The advantage of our approach is that we can use aggressive drift detection in the stable state to achieve a high detection rate, but mitigate the false positive rate of standalone drift detection via a reactive state that reacts quickly to true drifts while eliminating most false positives. The algorithm is generic in its base learner and can be applied across a variety of supervised learning problems. Our theoretical analysis shows that the risk of the algorithm is (i) statistically better than standalone drift detection and (ii) competitive to an algorithm with oracle knowledge of when (abrupt) drifts occur. Experiments on synthetic and real datasets with concept drifts confirm our theoretical analysis. 
    more » « less
  5. When learning from streaming data, a change in the data distribution, also known as concept drift, can render a previously-learned model inaccurate and require training a new model. We present an adaptive learning algorithm that extends previous drift-detection-based methods by incorporating drift detection into a broader stable-state/reactive-state process. The advantage of our approach is that we can use aggressive drift detection in the stable state to achieve a high detection rate, but mitigate the false positive rate of standalone drift detection via a reactive state that reacts quickly to true drifts while eliminating most false positives. The algorithm is generic in its base learner and can be applied across a variety of supervised learning problems. Our theoretical analysis shows that the risk of the algorithm is competitive to an algorithm with oracle knowledge of when (abrupt) drifts occur. Experiments on synthetic and real datasets with concept drifts confirm our theoretical analysis. 
    more » « less