skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iron in a Cage: Fixation of a Fe(II)tpy 2 Complex by Fourfold Interlinking
Abstract The coordination sphere of the Fe(II) terpyridine complex1is rigidified by fourfold interlinking of both terpyridine ligands. Profiting from an octa‐aldehyde precursor complex, the ideal dimensions of the interlinking structures are determined by reversible Schiff‐base formation, before irreversible Wittig olefination provided the rigidified complex. Reversed‐phase HPLC enables the isolation of the all‐transisomer of the Fe(II) terpyridine complex1, which is fully characterized. While temperature independent low‐spin states were recorded with superconducting quantum interference device (SQUID) measurements for both, the open precursor8and the interlinked complex1, evidence of the increased rigidity of the ligand sphere in1was provided by proton T2relaxation NMR experiments. The ligand sphere fixation in the macrocyclized complex1even reaches a level resisting substantial deformation upon deposition on an Au(111) surface, as demonstrated by its pristine form in a low temperature ultra‐high vacuum scanning tunneling microscope experiment.  more » « less
Award ID(s):
1764353
PAR ID:
10165995
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
37
ISSN:
1433-7851
Format(s):
Medium: X Size: p. 15947-15952
Size(s):
p. 15947-15952
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant. 
    more » « less
  2. Abstract Co‐crystallization of the spin‐crossover (SCO) cationic complex, [Fe(1‐bpp)2]2+(1‐bpp=2,6‐bis(pyrazol‐1‐yl)pyridine) with fractionally charged organic anion TCNQδ−(0<δ<1) afforded hybrid materials [Fe(1‐bpp)2](TCNQ)3.5 ⋅ 3.5MeCN (1) and [Fe(1‐bpp)2](TCNQ)4 ⋅ 4DCE (2), where TCNQ=7,7,8,8‐tetracyanoquinodimethane, MeCN=acetonitrile, and DCE=1,2‐dichloroethane. Both materials exhibit semiconducting behavior, with the room‐temperature conductivity values of 1.1×10−4 S/cm and 1.7×10−3 S/cm, respectively. The magnetic behavior of both complexes exhibits strong dependence on the content of the interstitial solvent. Complex1undergoes a gradual temperature‐driven SCO, with the midpoint temperature ofT1/2=234 K. The partial solvent loss by1leads to the increase in theT1/2value while complete desolvation renders the material high‐spin (HS) in the entire studied temperature range. In the case of2, the solvated complex shows a gradual SCO withT1/2=166 K only when covered with a mother liquid, while the facile loss of interstitial solvent, even at room temperature, leads to the HS‐only behavior. 
    more » « less
  3. Abstract Addition of the bipyridyl‐embedded cycloparaphenylene nanohoop bipy[9]CPP to [Fe{H2B(pyz)2}] (pyz=pyrazolyl) produces the distorted octahedral complex [Fe(bipy[9]CPP){H2B(pyz)2}2] (1). The molecular structure of1shows that the nanohoop ligand contains a non‐planar bipy unit. Magnetic susceptibility measurements indicate spin‐crossover (SCO) behaviour with aT1/2of 130 K, lower than that of 160 K observed with the related compound [Fe(bipy){H2B(pyz)2}2] (2), which contains a conventional bipy ligand. A computational study of1and2reveals that the curvature of the nanohoop leads to the different SCO properties, suggesting that the SCO behaviour of iron(II) can be tuned by varying the size and diameter of the nanohoop. 
    more » « less
  4. Abstract A highly water‐ and air‐stable Fe(II) complex with the quinol‐containing macrocyclic ligand H4qp4 reacts with H2O2to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or twopara‐quinones. The reaction increases theT1‐weighted relaxivity over four‐fold, enabling the complex to detect H2O2using clinical MRI technology. The iron‐containing sensor differs from its recently characterized manganese analog, which also detects H2O2, in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity. 
    more » « less
  5. Although copper‐catalyzed organic transformations are prevalent, insights into the interactions of phenols with simple copper(II) salts are not well understood. In contrast, inspired by the oxygenase‐type modifications of the phenolic substrates, the reactions of substituted phenols with metastable copper–oxygen intermediates are well documented. The present report sheds light on the reactions of substituted phenols with benchtop stable CuCl2salt and the role of a common base like triethylamine. Moreover, the reactions of substituted phenols with CuCl2in the presence of weakly coordinating tripodalN‐nitrosated ligandL3NOhave been illustrated, while a closely related tripodal copper(II) complexL3HCuCl2(2) of the corresponding non‐nitrosated ligandL3Hdoes not react with the phenolic substrates. Phenol reactions with CuCl2in the presence of theL3NOligand enable in depth mechanistic investigation, thereby illustrating a bimolecular rate law with ΔH= 15.13 kcal mol−1, ΔS = −9.6 eu, and kinetic isotope effectk2(ArOH)/k2(ArOD) in the range of 1.35–1.43. Thus, these findings suggest that simple copper(II) salts like CuCl2are capable of facilitating a proton‐coupled electron transfer (PCET) pathway. 
    more » « less