skip to main content


Title: nknown to Known: Advancing Knowledge of Coral Gene Function
Given the catastrophic changes befalling coral reefs, understanding coral gene function is essential to advance reef conservation. This has proved challenging due to the paucity of genomic data and genetic tools available for corals. Recently, CRISPR/Cas9 gene editing was applied to these species; however, a major bottleneck is the identification and prioritization of candidate genes for manipulation. This issue is exacerbated by the many unknown ('dark') coral genes that may play key roles in the stress response. We review the use of gene coexpression networks that incorporate both known and unknown genes to identify targets for reverse genetic analysis. This approach also provides a framework for the annotation of dark genes in established interaction networks to improve our fundamental knowledge of coral gene function.  more » « less
Award ID(s):
1756616
PAR ID:
10166049
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Trends in genetics
Volume:
36
Issue:
2
ISSN:
1357-4817
Page Range / eLocation ID:
93-104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting gene functions from genome sequence alone has been difficult, and the functions of a large fraction of plant genes remain unknown. However, leveraging the vast amount of currently available gene expression data has the potential to facilitate our understanding of plant gene functions, especially in determining complex traits. Gene coexpression networks—created by integrating multiple expression datasets—connect genes with similar patterns of expression across multiple conditions. Dense gene communities in such networks, commonly referred to as modules, often indicate that the member genes are functionally related. As such, these modules serve as tools for generating new testable hypotheses, including the prediction of gene function and importance. Recently, we have seen a paradigm shift from the traditional “global” to more defined, context-specific coexpression networks. Such coexpression networks imply genetic correlations in specific biological contexts such as during development or in response to a stress. In this short review, we highlight a few recent studies that attempt to fill the large gaps in our knowledge about cellular functions of plant genes using context-specific coexpression networks. 
    more » « less
  2. Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genomes revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor.Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.

     
    more » « less
  3. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less
  4. Macdonald, Stuart (Ed.)
    Abstract

    Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical school to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the Spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course, that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.

     
    more » « less
  5. Abstract

    As coral reefs continue to decline due to climate change, the role of coral epigenetics (specifically, gene body methylation, GBM) in coral acclimatization warrants investigation. The evidence is currently conflicting. In diverse animal phyla, the baseline GBM level is associated with gene function: continuously expressed “housekeeping” genes are typically highly methylated, while inducible context‐dependent genes have low or no methylation at all. Some authors report an association between GBM and the environment and interpret this observation as evidence of the GBM's role in acclimatization. Yet, others argue that the correlation between GBM change and gene expression change is typically absent or negligible. Here, we used the reef‐building coral,Acropora millepora,to test whether environmentally driven changes in GBM are associated with a gene's ability to respond to environmental changes (plasticity) rather than expression level. We analyzed two cases of modified gene expression plasticity observed in a 3‐week‐long heat acclimatization experiment. The first one was a group of heat‐induced genes that failed to revert their expression after the coral was translocated back to the control tank. The second case involved genes that changed the magnitude of their response to the daily temperature fluctuations over the course of the experiment. In both cases, we found negligible or no association with GBM change. We conclude that although both gene expression plasticity and GBM can change during acclimatization, there is no direct association between the two. This adds to the increasing volume of evidence that the function of GBM in invertebrates is unrelated to acclimatization on physiological timescales.

     
    more » « less