skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Topological Graph-Based Representation for Denoising Low Quality Binary Images
Scanned images of patent or historical documents often contain localized zigzag noise introduced by the digitizing process; yet when viewed as a whole image, global structures are apparent to humans, but not to machines. Existing denoising methods work well for natural images, but not for binary diagram images, which makes feature extraction difficult for computer vision and machine learning methods and algorithms. We propose a topological graph-based representation to tackle this denoising problem. The graph representation emphasizes the shapes and topology of diagram images, making it ideal for use in machine learning applications such as classification and matching of scientific diagram images. Our approach and algorithms provide essential structure and lay important foundation for computer vision such as scene graph-based applications, because topological relations and spatial arrangement among objects in images are captured and stored in our skeleton graph. In addition, while the parameters for almost all pixel-based methods are not adaptive, our method is robust in that it only requires one parameter and it is adaptive. Experimental comparisons with existing methods show the effectiveness of our approach.  more » « less
Award ID(s):
1748883
PAR ID:
10166136
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)
Page Range / eLocation ID:
1788 to 1798
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently a new feature representation framework based on a topological tool called persistent homology (and its persistence diagram summary) has gained much momentum. A series of methods have been developed to map a persistence diagram to a vector representation so as to facilitate the downstream use of machine learning tools. In these approaches, the importance (weight) of different persistence features are usually pre-set. However often in practice, the choice of the weight-functions hould depend on the nature of the specific data at hand. It is thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence summaries, as well as an optimization framework to learn the weight (and thus kernel). We apply the learned kernel to the challenging task of graph classification, and show that our WKPI-based classification framework obtains similar or (sometimes significantly) better results than the best results from a range of previous graph classification frameworks on benchmark datasets. 
    more » « less
  2. This paper presents the first approach to visualize the importance of topological features that define classes of data. Topological features, with their ability to abstract the fundamental structure of complex data, are an integral component of visualization and analysis pipelines. Although not all topological features present in data are of equal importance. To date, the default definition of feature importance is often assumed and fixed. This work shows how proven explainable deep learning approaches can be adapted for use in topological classification. In doing so, it provides the first technique that illuminates what topological structures are important in each dataset in regards to their class label. In particular, the approach uses a learned metric classifier with a density estimator of the points of a persistence diagram as input. This metric learns how to reweigh this density such that classification accuracy is high. By extracting this weight, an importance field on persistent point density can be created. This provides an intuitive representation of persistence point importance that can be used to drive new visualizations. This work provides two examples: Visualization on each diagram directly and, in the case of sublevel set filtrations on images, directly on the images themselves. This work highlights real-world examples of this approach visualizing the important topological features in graph, 3D shape, and medical image data. 
    more » « less
  3. null (Ed.)
    We introduce DeepIR, a new thermal image processing framework that combines physically accurate sensor modeling with deep network-based image representation. Our key enabling observations are that the images captured by thermal sensors can be factored into slowly changing, scene-independent sensor non-uniformities (that can be accurately modeled using physics) and a scene-specific radiance flux (that is well-represented using a deep network-based regularizer). DeepIR requires neither training data nor periodic ground-truth calibration with a known black body target--making it well suited for practical computer vision tasks. We demonstrate the power of going DeepIR by developing new denoising and super-resolution algorithms that exploit multiple images of the scene captured with camera jitter. Simulated and real data experiments demonstrate that DeepIR can perform high-quality non-uniformity correction with as few as three images, achieving a 10dB PSNR improvement over competing approaches. 
    more » « less
  4. We introduce DeepIR, a new thermal image processing framework that combines physically accurate sensor modeling with deep network-based image representation. Our key enabling observations are that the images captured by thermal sensors can be factored into slowly changing, scene-independent sensor non-uniformities (that can be accurately modeled using physics) and a scene-specific radiance flux (that is well-represented using a deep network-based regularizer). DeepIR requires neither training data nor periodic ground-truth calibration with a known black body target--making it well suited for practical computer vision tasks. We demonstrate the power of going DeepIR by developing new denoising and super-resolution algorithms that exploit multiple images of the scene captured with camera jitter. Simulated and real data experiments demonstrate that DeepIR can perform high-quality non-uniformity correction with as few as three images, achieving a 10dB PSNR improvement over competing approaches. 
    more » « less
  5. Applications of multimodal neuroimaging techniques, including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have gained prominence in recent years, and they are widely practiced in brain–computer interface (BCI) and neuro-pathological diagnosis applications. Most existing approaches assume observations are independent and identically distributed (i.i.d.), as shown in the top section of the right figure, yet ignore the difference among subjects. It has been challenging to model subject groups to maintain topological information (e.g., patient graphs) while fusing BCI signals for discriminant feature learning. In this article, we introduce a topology-aware graph-based multimodal fusion (TaGMF) framework to classify amyotrophic lateral sclerosis (ALS) and healthy subjects, illustrated in the lower section of the right image. Our framework is built on graph neural networks (GNNs) but with two unique contributions. First, a novel topology-aware graph (TaG) is proposed to model subject groups by considering: 1) intersubject; 2) intrasubject; and 3) intergroup relations. Second, the learned representation of EEG and fNIRS signals of each subject allows for explorations of different fusion strategies along with the TaGMF optimizations. Our analysis demonstrates the effectiveness of our graph-based fusion approach in multimodal classification by achieving a 22.6% performance improvement over classical approaches. 
    more » « less