Abstract A series of iron polypyridyl redox shuttles were synthesized in the 2+ and 3+ oxidation states and paired with a series of wide optical gap organic dyes with weak aryl ether electron‐donating groups. High voltage dye‐sensitized solar cell (HV‐DSC) devices were obtained through controlling the redox shuttle energetics and dye donor structure. The use of aryl ether donor groups, in place of commonly used aryl amines, allowed for the lowering of the dye ground‐state oxidation potential which enabled challenging to oxidize redox shuttles based on Fe2+polypyridyl structures to be used in functional devices. By carefully designing a dye series that varies the number of alkyl chains for TiO2surface protection, the recombination of electrons in TiO2to the oxidized redox shuttle could be controlled, leading to HV‐DSC devices of up to 1.4 V.
more »
« less
Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells
Three copper redox shuttles ([Cu( 1 )] 2+/1+ , [Cu( 2 )] 2+/1+ , and [Cu( 3 )] 2+/1+ ) featuring tetradentate ligands were synthesized and evaluated computationally, electrochemically, and in dye-sensitized solar cell (DSC) devices using a benchmark organic dye, Y123 . Neutral polyaromatic ligands with limited flexibility were targeted as a strategy to improve solar-to-electrical energy conversion by reducing voltage losses associated with redox shuttle electron transfer events. Inner-sphere electron transfer reorganization energies ( λ ) were computed quantum chemically and compared to the commonly used [Co(bpy) 3 ] 3+/2+ redox shuttle which has a reported λ value of 0.61 eV. The geometrically constrained biphenyl-based Cu redox shuttles investigated here have lower reorganization energies (0.34–0.53 eV) and thus can potentially operate with lower driving forces for dye regeneration (Δ G reg ) in DSC devices when compared to [Co(bpy) 3 ] 3+/2+ -based devices. The rigid tetradentate ligand design promotes more efficient electron transfer reactions leading to an improved J SC (14.1 mA cm −2 ), higher stability due to the chelate effect, and a decrease in V lossOC for one of the copper redox shuttle-based devices.
more »
« less
- Award ID(s):
- 1757220
- PAR ID:
- 10166237
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 49
- Issue:
- 2
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 343 to 355
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Luminescent complexes of heavy metals such as iridium, platinum, and ruthenium play an important role in photocatalysis and energy conversion applications as well as organic light-emitting diodes (OLEDs). Achieving comparable performance from more–earth-abundant copper requires overcoming the weak spin-orbit coupling of the light metal as well as limiting the high reorganization energies typical in copper(I) [Cu(I)] complexes. Here we report that two-coordinate Cu(I) complexes with redox active ligands in coplanar conformation manifest suppressed nonradiative decay, reduced structural reorganization, and sufficient orbital overlap for efficient charge transfer. We achieve photoluminescence efficiencies >99% and microsecond lifetimes, which lead to an efficient blue-emitting OLED. Photophysical analysis and simulations reveal a temperature-dependent interplay between emissive singlet and triplet charge-transfer states and amide-localized triplet states.more » « less
-
null (Ed.)One-pot reaction of tris(2-aminoethyl)amine (TREN), [Cu I (MeCN) 4 ]PF 6 , and paraformaldehyde affords a mixed-valent [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu 3 (μ 3 -OH)] 3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 and its solvent-exposed analog [ TREN3 Cu II Cu II Cu II (μ 3 -O)](PF 6 ) 4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [ TREN4 Cu I Cu I Cu I (μ 3 -OH)](PF 6 ) 2 can reduce O 2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at Cu I Cu I Cu I ( 4a ), Cu II Cu I Cu I ( 4b ), and Cu II Cu II Cu I ( 4c ) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (10 5 to 10 6 M −1 s −1 ) were observed for both Cu I Cu I Cu I /Cu II Cu I Cu I and Cu II Cu I Cu I /Cu II Cu II Cu I redox couples, approaching the rapid electron transfer rates of copper sites in MCO.more » « less
-
Iodine binding to thiophene rings in dyes for dye-sensitized solar cells (DSCs) has been hypothesized to be performance degrading in a number of literature cases. Binding of iodine to dyes near the semiconductor surface can promote undesirable electron transfers and lower the overall efficiency of devices. Six thiophene or furan containing dye analogs were synthesized to analyze iodine binding to the dyes via Raman spectroscopy, UV-Vis studies, device performance metrics and density functional theory (DFT) based computations. Evidence suggests I 2 binds thiophene-based dyes stronger than furan-based dyes. This leads to higher DSC device currents and voltages from furan analogues, and longer electron lifetimes in DSC devices using furan based dyes. Raman spectrum of the TiO 2 surface-bound dyes reveals additional and more instense peaks for thiophene dyes in the presence of I 2 relative to no I 2 . Additionally, broader and shifted UV-Vis peaks are observed for thiophene dyes in the presence of I 2 on TiO 2 films suggesting significant interaction between the dye molecules and I 2 . These observations are also supported by DFT and TD-DFT calculations which indicate the absence of a key geometric energy minimum in the dye–I 2 ground state for furan dyes which are readily observed for the thiophene based analogues.more » « less
-
null (Ed.)We report the hydrothermal syntheses and crystal structures of aquabis(2,2′-bipyridine-κ 2 N , N ′)copper(II) hexafluoridosilicate tetrahydrate, [Cu(bpy) 2 (H 2 O)][SiF 6 ]·4H 2 O (bpy is 2,2′-bipyridine, C 10 H 8 N 2 ), (I), bis(2,2′-bipyridine-3κ 2 N , N ′)-di-μ-fluorido-1:3κ 2 F : F ;2:3κ 2 F : F -decafluorido-1κ 5 F ,2κ 5 F -ditantalum(V)copper(II), [Cu(bpy) 2 (TaF 6 ) 2 ], (II), tris(2,2′-bipyridine-κ 2 N , N ′)copper(II) bis[hexafluoridotantalate(V)], [Cu(bpy) 3 ][TaF 6 ] 2 , (III), and catena -poly[[diaqua(2,2′-bipyridine-κ 2 N , N ′)copper(II)]-μ-fluorido-tetrafluoridotin-μ-fluorido], [Cu(bpy)(H 2 O) 2 SnF 6 ] n , (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C 2 , D 2 , and D 3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H...F and O—H...O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin.more » « less