Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres
- Award ID(s):
- 1954517
- PAR ID:
- 10166333
- Date Published:
- Journal Name:
- Construction and Building Materials
- Volume:
- 198
- Issue:
- C
- ISSN:
- 0950-0618
- Page Range / eLocation ID:
- 512 to 526
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Aldrich, Jonathan; Silva, Alexandra (Ed.)Tools such as Alloy enable users to incrementally define, explore, verify, and diagnose specifications for complex systems. A critical component of these tools is a visualizer that lets users graphically explore generated models. As we show, however, a default visualizer that knows nothing about the domain can be unhelpful and can even actively violate presentational and cognitive principles. At the other extreme, full-blown custom visualization requires significant effort as well as knowledge that a tool user might not possess. Custom visualizations can also exhibit bad (even silent) failures. This paper charts a middle ground between the extremes of default and fully-customizable visualization. We capture essential domain information for lightweight diagramming, embodying this in a language. To identify key elements of lightweight diagrams, we ground the language design in both the cognitive science research on diagrams and in a corpus of 58 custom visualizations. We distill from these sources a small set of orthogonal primitives, and use the primitives to guide a diagramming language called Cope-and-Drag (CnD). We evaluate it on sample tasks, three user studies, and performance, and find that short CnD specifications consistently improve model comprehension over the Alloy default. CnD thus defines a new point in the design space of diagramming: a language that is lightweight, effective, and driven by sound principles.more » « less
-
Lamenting the lack of a natural userland abstraction for preemptive interruption and asynchronous cancellation, we propose lightweight preemptible functions, a mechanism for synchronously performing a function call with a precise timeout that is lightweight, efficient, and composable, all while being portable between programming languages. We present the design of libinger, a library that provides this abstraction, on top of which we build libturquoise, arguably the first general-purpose and backwards-compatible preemptive thread library implemented entirely in userland. Finally, we demonstrate this software stack’s applicability to and performance on the problems of combatting head-of-line blocking and time-based DoS attacks.more » « less
An official website of the United States government

