skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximal multi-layer specification synthesis
There has been a significant interest in applying programming-by-example to automate repetitive and tedious tasks. However, due to the incomplete nature of input-output examples, a synthesizer may generate programs that pass the examples but do not match the user intent. In this paper, we propose MARS, a novel synthesis framework that takes as input a multi-layer specification composed by input-output examples, textual description, and partial code snippets that capture the user intent. To accurately capture the user intent from the noisy and ambiguous description, we propose a hybrid model that combines the power of an LSTM-based sequence-to-sequence model with the apriori algorithm for mining association rules through unsupervised learning. We reduce the problem of solving a multi-layer specification synthesis to a Max-SMT problem, where hard constraints encode well-typed concrete programs and soft constraints encode the user intent learned by the hybrid model. We instantiate our hybrid model to the data wrangling domain and compare its performance against Morpheus, a state-of-the-art synthesizer for data wrangling tasks. Our experiments demonstrate that our approach outperforms MORPHEUS in terms of running time and solved benchmarks. For challenging benchmarks, our approach can suggest candidates with rankings that are an order of magnitude better than MORPHEUS which leads to running times that are 15x faster than MORPHEUS.  more » « less
Award ID(s):
1762363
PAR ID:
10166351
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Page Range / eLocation ID:
602 to 612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hirschfeld, Robert; Pape, Tobias (Ed.)
    Program synthesis promises to help software developers with everyday tasks by generating code snippets automatically from input-output examples and other high-level specifications. The conventional wisdom is that a synthesizer must always satisfy the specification exactly. We conjecture that this all-or-nothing paradigm stands in the way of adopting program synthesis as a developer tool: in practice, the user-written specification often contains errors or is simply too hard for the synthesizer to solve within a reasonable time; in these cases, the user is left with a single over-fitted result or, more often than not, no result at all. In this paper we propose a new program synthesis paradigm we call best-effort program synthesis, where the synthesizer returns a ranked list of partially-valid results, i.e. programs that satisfy some part of the specification. To support this paradigm, we develop best-effort enumeration, a new synthesis algorithm that extends a popular program enumeration technique with the ability to accumulate and return multiple partially-valid results with minimal overhead. We implement this algorithm in a tool called BESTER, and evaluate it on 79 synthesis benchmarks from the literature. Contrary to the conventional wisdom, our evaluation shows that BESTER returns useful results even when the specification is flawed or too hard: i) for all benchmarks with an error in the specification, the top three BESTER results contain the correct solution, and ii) for most hard benchmarks, the top three results contain non-trivial fragments of the correct solution. We also performed an exploratory user study, which confirms our intuition that partially-valid results are useful: the study shows that programmers use the output of the synthesizer for comprehension and often incorporate it into their solutions. 
    more » « less
  2. While input-output examples are a natural form of specification for program synthesis engines, they can be imprecise for domains such as table transformations. In this paper, we investigate how extracting readily-available information about the user intent behind these input-output examples helps speed up synthesis and reduce overfitting. We present Gauss, a synthesis algorithm for table transformations that accepts partial input-output examples, along with user intent graphs. Gauss includes a novel conflict-resolution reasoning algorithm over graphs that enables it to learn from mistakes made during the search and use that knowledge to explore the space of programs even faster. It also ensures the final program is consistent with the user intent specification, reducing overfitting. We implement Gauss for the domain of table transformations (supporting Pandas and R), and compare it to three state-of-the-art synthesizers accepting only input-output examples. We find that it is able to reduce the search space by 56×, 73× and 664× on average, resulting in 7×, 26× and 7× speedups in synthesis times on average, respectively. 
    more » « less
  3. With the rise of software-as-a-service and microservice architectures, RESTful APIs are now ubiquitous in mobile and web applications. A service can have tens or hundreds of API methods, making it a challenge for programmers to find the right combination of methods to solve their task. We present APIphany, a component-based synthesizer for programs that compose calls to RESTful APIs. The main innovation behind APIphany is the use of precise semantic types, both to specify user intent and to direct the search. APIphany contributes three novel mechanisms to overcome challenges in adapting component-based synthesis to the REST domain: (1) a type inference algorithm for augmenting REST specifications with semantic types; (2) an efficient synthesis technique for “wrangling” semi-structured data, which is commonly required in working with RESTful APIs; and (3) a new form of simulated execution to avoid executing APIs calls during synthesis. We evaluate APIphany on three real-world APIs and 32 tasks extracted from GitHub repositories and StackOverflow. In our experiments, APIphany found correct solutions to 29 tasks, with 23 of them reported among top ten synthesis results. 
    more » « less
  4. Example-based specifications for program synthesis are inherently ambiguous and may cause synthesizers to generate programs that do not exhibit intended behavior on unseen inputs. Existing synthesis techniques attempt to address this problem by either placing a domain-specific syntactic bias on the hypothesis space or heavily relying on user feedback to help resolve ambiguity. We present a new framework to address the ambiguity/generalizability problem in example-based synthesis. The key feature of our framework is that it places a semantic bias on the hypothesis space using relational perturbation properties that relate the perturbation/change in a program output to the perturbation/change in a program input. An example of such a property is permutation invariance: the program output does not change when the elements of the program input (array) are permuted. The framework is portable across multiple domains and synthesizers and is based on two core steps: (1) automatically augment the set of user-provided examples by applying relational perturbation properties and (2) use a generic example-based synthesizer to generate a program consistent with the augmented set of examples. Our framework can be instantiated with three different user interfaces, with varying degrees of user engagement to help infer relevant relational perturbation properties. This includes an interface in which the user only provides examples and our framework automatically infers relevant properties. We implement our framework in a tool SKETCHAX specialized to the SKETCH synthesizer and demonstrate that SKETCHAX is effective in significantly boosting the performance of SKETCH for all three user interfaces. 
    more » « less
  5. Singh, Gagandeep; Urban, Caterina (Ed.)
    Constraint-based program synthesis techniques have been widely used in numerous settings. However, synthesizing programs that use libraries remains a major challenge. To handle complex or black-box libraries, the state of the art is to provide carefully crafted mocks or models to the synthesizer, requiring extra manual work. We address this challenge by proposing TOSHOKAN, a new synthesis framework as an alternative approach in which library-using programs can be generated without any user-provided artifacts at the cost of moderate performance overhead. The framework extends the classic counterexample-guided synthesis framework with a bootstrapping, log-based library model. The model collects input-output samples from running failed candidate programs on witness inputs. We prove that the framework is sound when a sound, bounded verifier is available, and also complete if the underlying synthesizer and verifier promise to produce minimal outputs. We implement and incorporate the framework to JSKETCH, a Java sketching tool. Experiments show that TOSHOKAN can successfully synthesize programs that use a variety of libraries, ranging from mathematical functions to data structures. Comparing to state-of-the-art synthesis algorithms which use mocks or models, TOSHOKAN reduces up to 159 lines of code of required manual inputs, at the cost of less than 40s of performance overheads. 
    more » « less