skip to main content


Title: The Ins and Outs of Autophagic Ribosome Turnover
Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants.  more » « less
Award ID(s):
1714996
NSF-PAR ID:
10166446
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Cells
Volume:
8
Issue:
12
ISSN:
2073-4409
Page Range / eLocation ID:
1603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.

     
    more » « less
  2. SUMMARY

    Translating ribosome affinity purification (TRAP) utilizes transgenic plants expressing a ribosomal protein fused to a tag for affinity co‐purification of ribosomes and the mRNAs that they are translating. This population of actively translated mRNAs (translatome) can be interrogated by quantitative PCR or RNA sequencing. Condition‐ or cell‐specific promoters can be utilized to isolate the translatome of specific cell types, at different growth stages and/or in response to environmental variables. While advantageous for revealing differential expression, this approach may not provide sufficient sensitivity when activity of the condition/cell‐specific promoter is weak, when ribosome turnover is low in the cells of interest, or when the targeted cells are ephemeral. In these situations, expressing tagged ribosomes under the control of these specific promoters may not yield sufficient polysomes for downstream analysis. Here, we describe a new TRAP system that employs two transgenes: One is constitutively expressed and encodes a ribosomal protein fused to one fragment of a split green fluorescent protein (GFP); the second is controlled by a stimulus‐specific promoter and encodes the second GFP fragment fused to an affinity purification tag. In cells where both transgenes are active, the purification tag is attached to ribosomes by bi‐molecular folding and assembly of the split GFP fragments. This approach provides increased sensitivity and better temporal resolution because it labels pre‐existing ribosomes and does not depend on rapid ribosome turnover. We describe the optimization and key parameters of this system, and then apply it to a plant–pathogen interaction in which spatial and temporal resolution are difficult to achieve with current technologies.

     
    more » « less
  3. Abstract

    RNA turnover is essential in maintaining messenger RNA (mRNA) homeostasis during various developmental stages and stress responses. Co‐translational mRNA decay (CTRD), a process in which mRNAs are degraded while still associated with translating ribosomes, has recently been discovered to function in yeast and three angiosperm transcriptomes. However, it is still unclear how prevalent CTRD across the plant lineage. Moreover, the sequence features of co‐translationally decayed mRNAs have not been well‐studied. Here, utilizing a collection of publicly available degradome sequencing datasets for another seven angiosperm transcriptomes, we have confirmed that CTRD is functioning in at least 10 angiosperms and likely throughout the plant lineage. Additionally, we have identified sequence features shared by the co‐translationally decayed mRNAs in these species, implying a possible conserved triggering mechanism for this pathway. Given that degradome sequencing datasets can also be used to identify actively translating upstream open reading frames (uORFs), which are quite understudied in plants, we have identified numerous actively translating uORFs in the same 10 angiosperms. These findings reveal that actively translating uORFs are prevalent in plant transcriptomes, some of which are conserved across this lineage. We have also observed conserved sequence features in the regions flanking these uORFs' stop codons that might contribute to ribosome stalling at these sequences. Finally, we discovered that there were very few overlaps between the mRNAs harboring actively translating uORFs and those sorted into the co‐translational decay pathway in the majority of the studied angiosperms, suggesting that these two processes might be nearly mutually exclusive in those species. In total, our findings provide the identification of CTRD and actively translating uORFs across a broad collection of plants and provide novel insights into the important sequence features associated with these collections of mRNAs and regulatory elements, respectively.

     
    more » « less
  4. Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs indcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3, or Scd6; whereas most of the remaining transcripts utilize nonsense-mediated mRNA decay factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed thatdcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased bydcp2Δ,we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs indcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are upregulated, and both mitochondrial function and cell filamentation are elevated indcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.

     
    more » « less
  5. Abstract

    We have examined the roles of yeast mRNA decapping-activators Pat1 and Dhh1 in repressing the translation and abundance of specific mRNAs in nutrient-replete cells using ribosome profiling, RNA-Seq, CAGE analysis of capped mRNAs, RNA Polymerase II ChIP-Seq, and TMT-mass spectrometry of mutants lacking one or both factors. Although the Environmental Stress Response (ESR) is activated in dhh1Δ and pat1Δ mutants, hundreds of non-ESR transcripts are elevated in a manner indicating cumulative repression by Pat1 and Dhh1 in wild-type cells. These mRNAs show both reduced decapping and diminished transcription in the mutants, indicating that impaired mRNA turnover drives transcript derepression in cells lacking Dhh1 or Pat1. mRNA degradation stimulated by Dhh1/Pat1 is not dictated by poor translation nor enrichment for suboptimal codons. Pat1 and Dhh1 also collaborate to reduce translation and protein production from many mRNAs. Transcripts showing concerted translational repression by Pat1/Dhh1 include mRNAs involved in cell adhesion or utilization of the poor nitrogen source allantoin. Pat1/Dhh1 also repress numerous transcripts involved in respiration, catabolism of non-preferred carbon or nitrogen sources, or autophagy; and we obtained evidence for elevated respiration and autophagy in the mutants. Thus, Pat1 and Dhh1 function as post-transcriptional repressors of multiple pathways normally activated only during nutrient limitation.

     
    more » « less