Effect of “X” Ligands on the Photocatalytic Reduction of CO 2 to CO with Re(pyridylNHC-CF 3 )(CO) 3 X Complexes: Effect of “X” Ligands on the Photocatalytic Reduction of CO 2 to CO with Re(pyridylNHC-CF 3 )(CO) 3 X Complexes
- PAR ID:
- 10166603
- Date Published:
- Journal Name:
- European Journal of Inorganic Chemistry
- Volume:
- 2020
- Issue:
- 19
- ISSN:
- 1434-1948
- Page Range / eLocation ID:
- 1844 to 1851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect of dodecanethiol on the activity, selectivity, and stability of Au nanoparticles for electrochemical carbon dioxide reduction (CO 2 R). Results show that dodecanethiol on Au nanoparticles significantly enhances selectivity and stability with minimal loss in activity by acting as a CO 2 -permeable membrane, which blocks the deposition of metal ions that are otherwise responsible for rapid deactivation. Although dodecanethiol occupies 90% or more of the electrochemical active surface area, it has a negligible effect on the partial current density to CO, indicating that it specifically does not block the active sites responsible for CO 2 R. Further, by preventing trace ion deposition, dodecanethiol stabilizes CO production on Au nanoparticles under conditions where CO 2 R selectivity on polycrystalline Au rapidly decays to zero. Comparison with other surface ligands and nanoparticles shows that this effect is specific to both the chemical identity and the surface structure of the dodecanethiol monolayer. To demonstrate the potential of this catalyst, CO 2 R was performed in electrolyte prepared from ambient river water, and dodecanethiol-capped Au nanoparticles produce more than 100 times higher CO yield compared to clean polycrystalline Au at identical potential and similar current.more » « less
-
Abstract The ever‐expanding need for renewable energy can be addressed in part by photocatalytic CO2reduction to give fuels via an artificial photosynthetic process driven by sunlight. A series of rhenium photocatalysts are evaluated in the photocatalytic CO2reduction reaction and via photophysical, electrochemical, and computational studies. The impact of various electron withdrawing substituents on the aryl group of the pyNHC‐aryl ligand along with the impact of extending conjugation along the backbone of the ligand is analyzed. A strong correlation between excited‐state lifetimes, photocatalytic rates, and computationally determined dissociation energy of the labile ligand of these complexes is observed. Additionally, computed orbital analysis provides an added understanding, which allows for prediction of the potential impact of an electron withdrawing substituent on photocatalysis.more » « less