The Junggar and Turpan basins of Xinjiang, northwest China, host a well-preserved terrestrial Permo-Triassic boundary sequence exposed on the flanks of the Bogda Mountains. During the Permo-Triassic, this region was located in mid-latitude northeast Pangaea (~45°N), making it an important comparison to the higher latitude record preserved in the South African Karoo Basin (~60°S). Broad similarities exist between the tetrapod records of both areas, such as the reported co-occurrence of Dicynodon-grade dicynodontoids and Lystrosaurus in the upper Permian and the high abundance of Lystrosaurus in the Lower Triassic. In the Bogda sections, the Permo-Triassic boundary falls within the upper Guodikeng Formation (= upper Wutonggou low order cycle), but several horizons have been proposed based on biostratigraphy, chemostratigraphy, and paleomagnetic data. A new Bayesian age model calibrated by multiple radiometric dates and tied to detailed litho- and cyclostratigraphic data offers new insight into the location of the Permo-Triassic boundary in Xinjiang and the opportunity to reconsider tetrapod occurrences in a highly resolved chronostratigraphic framework. We investigated the positions of new and historic tetrapod specimens relative to the revised Permo-Triassic boundary, including uncertainties about the locations of key historic specimens. The stratigraphic range of Dicynodon-grade dicynodontoids in Xinjiang is poorly constrained: most specimens, including the holotype of Jimusaria sinkianensis, cannot be precisely placed relative to the Permo-Triassic boundary. A new specimen of Turfanodon sp. for which we have reliable data occurs in the upper Permian. Despite their previous treatment as Permian in age, most Bogda chroniosuchians were collected in strata above the Permo- Triassic boundary and the therocephalian Dalongkoua fuae also may be Triassic. Some prior placements of the Permo- Triassic boundary in Xinjiang imply an upper Permian lowestoccurrence for Lystrosaurus, but all Lystrosaurus specimens that we can precisely locate fall above the Permo-Triassic boundary. The high abundance of Lystrosaurus in the Early Triassic of Xinjiang likely parallels an Early Triassic age for the interval of greatest Lystrosaurus abundance in the Karoo Basin, but additional research is needed to determine whether there was a single, globally synchronous time of highest Lystrosaurus abundance.
more »
« less
Calcic Vertisols in the upper Daptocephalus Assemblage Zone, Balfour Formation, Karoo Basin, South Africa: Implications for Late Permian Climate
ABSTRACT The fully continental succession of the Beaufort Group, Karoo Basin, South Africa, has been used in the development of environmental models proposed for the interval that spans the contact between the Daptocephalus to Lystrosaurus Assemblage Zones, associated by some workers with the end-Permian extinction event. An aridification trend is widely accepted, yet geochemical data indicate that the majority of in situ paleosols encountered in this interval developed in waterlogged environments. To date, the presence of calcic paleosols in the latest Permian can be inferred only from the presence of calcite-cemented pedogenic nodules concentrated in fluvial channel-lag deposits. Here, we report on the first empirical evidence of in situ calcic Vertisols found in the upper Daptocephalus Assemblage Zone near Old Wapadsberg Pass, one of eight classic localities in which the vertebrate turnover is reported in the Karoo Basin. Seven discrete intervals of calcic Vertisols, exposed over a very limited lateral extent, occur in an ∼ 25 m stratigraphic interval. Estimates of mean annual temperature and mean annual precipitation are calculated from geochemical measurements of one paleosol, and these estimates indicate that the prevailing climate at the time of pedogenesis was seasonally cold and humid. Correlation with adjacent stratigraphic sections indicates that the late Permian landscape experienced poorly drained and better-drained phases, interpreted to reflect a climate that varied between episodically dry and episodically wet. In contrast to a paleoenvironmental reconstruction of unidirectional aridification from strata in the Wapadsberg Pass region, this study provides new evidence for a wetting trend towards the Daptocephalus–Lystrosaurus Assemblage-Zone boundary.
more »
« less
- Award ID(s):
- 1624302
- PAR ID:
- 10166617
- Date Published:
- Journal Name:
- Journal of Sedimentary Research
- Volume:
- 90
- Issue:
- 6
- ISSN:
- 1527-1404
- Page Range / eLocation ID:
- 609 to 628
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Permian–Triassic rocks of the Transantarctic Basin provide an unparalleled record of high latitude paleoenvironments and terrestrial vertebrate faunas. Here we summarize the taxonomic and paleoecological implications of the approximately 1300 vertebrate fossils collected since 1968, as well as report on new geologic field observations made during the 2017–18 austral field season. The Fremouw Formation records a vertebrate assemblage taxonomically most similar to that of the Karoo Basin of South Africa, with 10 genera shared in common. However, temnospondyls form a much greater percentage of tetrapod occurrences in the Fremouw Formation, suggesting favorable conditions for these ectothermic fossil amphibians at high latitudes. Lower Triassic small reptiles (viz. Procolophon, Prolacerta) occur in slightly higher proportions than in the Karoo, but their taxonomic diversity is likely undercounted. Seven stratigraphic columns of the upper Buckley and lower–middle Fremouw formations detail fluvial depositional environments in the central Transantarctic region, recording a shift from wet swamp lands to drier floodplains, most similar to Gondwanan basins in Australia. Fremouw Formation paleosols primarily consist of Protosols, which indicate poor soil forming conditions likely due to low precipitation and high sediment supply from crevasse splays. Mineralogy from X-ray diffraction, review of igneous intrusives, and Buckley Formation coal characterization demonstrate post-pedogenic diagenetic alteration that casts doubt on the results of previous stable isotopic studies of these paleosols. Tetrapod fossils first appear in the Fremouw Formation, which has been taken as evidence for immigration to the Antarctic portion of southern Pangea around the time of the end-Permian mass extinction. However, this may be due to higher soil pH, increased base saturation, lower moisture content, and more rapid burial conditions in the Fremouw than the underlying Buckley Formation that favored bone preservation.more » « less
-
Paleosols represent fossil records of paleolandscape processes, paleobiotic interactions with the land surface, and paleoclimate. Paleosol-based reconstructions have figured prominently in the study of significant changes in global climate and terrestrial life, with one of the more highly studied examples being the end-Permian extinction (EPE). The EPE was once thought to consist of synchronous extinctions in the marine realm and the terrestrial realm, with the latter displaying a lower magnitude extinction of vertebrate, insect, and plant life. However, emerging stratigraphic records, anchored by high-precision U–Pb ages, and compilations of fossil taxa indicate that the terrestrial realm on Gondwana experienced an asynchronous extinction record with the marine realm; and, at the global-scale, possibly the lack of a true mass extinction for plant and vertebrate communities. Moreover, paleosol-based interpretations of the EPE on Gondwana typically focus on one depositional basin and extrapolate those finding to assess the potential for global paleoenvironmental/paleoclimatic change. This review compiles observations of paleosols, sedimentology, stratigraphy, and geochemical data across Gondwana during the Late Permian in order to critically assess these interpretations of global change in the lead up to the EPE.more » « less
-
Paleocene-Eocene hyperthermals are viewed as some of the best ancient analogs for projected future anthropogenic climate change. In order to fully evaluate the magnitude of these climactic perturbations, however, a more complete understanding of prevailing background conditions is necessary. The Mississippi Embayment, a major southwest-dipping sedimentary basin in the Gulf of Mexico coastal region of North America, contains an extensive record of Paleocene strata deposited prior to the onset of the Paleocene Carbon Isotope Maximum (PCIM), a gradual warming trend upon which the Paleocene-Eocene Thermal Maximum (PETM) was superimposed. In order to evaluate pre-PCIM paleoclimate, we focus on paleosols in the Upper Paleocene Naheola Formation. A continuous section of the Naheola is available in archival core collected by Mississippi Minerals Resources Institute from Tippah County, Mississippi, USA. We performed a suite of initial core description methods, including logging of visual observations (e.g., grain size and Munsell colors), gamma density, magnetic susceptibility, smear slide analysis, and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Results indicate a > 8-m-thick interval of 5 stacked paleosols associated with 4 lignite seams. The paleosols range in thickness from 0.6 m to 1.9 m, while the lignite seams range in thickness from 0.3 m to 1.3 m. Paleosols are characterized by low chroma matrix colors, mottling, and abundant carbonized roots. The thickest paleosols each exhibit an interval that coarsens and then fines upward; these are likely composite paleosols. Applying SEM-EDS results from all paleosols to the chemical index of alteration minus potash (CIA-K) yields preliminary mean annual precipitation estimates between 1200 and 1300 mm. The oldest paleosol contains abundant kaolinite and future stable isotope analysis will be used to reconstruct paleotemperature. Ongoing work will evaluate the relative influence of each of the five soil-forming factors on Naheola paleosol development and reexamine Paleocene- Eocene hyperthermals within the context of our results. Future work will include pollen analysis to improve chronostratigraphic control and evaluate paleoecological response to the Paleocene- Eocene climate change.more » « less
-
The demise of the Late Paleozoic Ice Age has been hypothesized as diachronous, occurring first in western South America and progressing eastward across Africa and culminating in Australia over an ~60 m.y. period, suggesting tectonic forcing mechanisms that operate on time scales of 106 yr or longer. We test this diachronous deglaciation hypothesis for southwestern and south-central Gondwana with new single crystal U-Pb zircon chemical abrasion thermal ionizing mass spectrometry (CA-TIMS) ages from volcaniclastic deposits in the Paraná (Brazil) and Karoo (South Africa) Basins that span the terminal deglaciation through the early postglacial period. Intrabasinal stratigraphic correlations permitted by the new high-resolution radioisotope ages indicate that deglaciation across the south to southeast Paraná Basin was synchronous, with glaciation constrained to the Carboniferous. Cross-basin correlation reveals two additional glacial-deglacial cycles in the Karoo Basin after the terminal deglaciation in the Paraná Basin. South African glaciations were penecontemporaneous (within U-Pb age uncertainties) with third-order sequence boundaries (i.e., inferred base-level falls) in the Paraná Basin. Synchroneity between early Permian glacial-deglacial events in southwestern to south-central Gondwana and pCO2 fluctuations suggest a primary CO2 control on ice thresholds. The occurrence of renewed glaciation in the Karoo Basin, after terminal deglaciation in the Paraná Basin, reflects the secondary influences of regional paleogeography, topography, and moisture sources.more » « less
An official website of the United States government

