skip to main content


Title: Synthesis of Honeycomb‐Structured Beryllium Oxide via Graphene Liquid Cells
Abstract

Using high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet‐chemistry approach. These liquid cells can feature van‐der‐Waals pressures up to 1 GPa, producing a miniaturized high‐pressure container for the crystallization in solution. The thickness of as‐received crystals is beyond the thermodynamic ultra‐thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near‐free‐standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous‐solution approaches of more metal‐oxide semiconductors with exotic phase structures and properties in graphene‐encapsulated confined cells.

 
more » « less
NSF-PAR ID:
10166728
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
36
ISSN:
0044-8249
Page Range / eLocation ID:
p. 15864-15870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet‐chemistry approach. These liquid cells can feature van‐der‐Waals pressures up to 1 GPa, producing a miniaturized high‐pressure container for the crystallization in solution. The thickness of as‐received crystals is beyond the thermodynamic ultra‐thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near‐free‐standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous‐solution approaches of more metal‐oxide semiconductors with exotic phase structures and properties in graphene‐encapsulated confined cells.

     
    more » « less
  2. Abstract

    Nanostructured graphene electrodes generally have a low density, which can limit the volumetric performance for energy storage devices. The liquid‐phase mild reduction process of graphene oxide sheets is combined with the continuous aerosol densification process to produce high‐density graphene agglomerates in the form of microspheres. The produced graphene assembly shows the cabbage‐like morphology with a high density of 0.75 g cm−3. In spite of such high density, the cabbage‐like graphene microspheres have narrow‐ranged mesopores and a high surface area. The cabbage‐like graphene microsphere exhibits both high gravimetric and volumetric energy densities due to the optimized microstructure, which shows a high gravimetric capacitance of 177 F g−1and volumetric capacitance of 117 F cm−3in supercapacitors. As a cathode for lithium‐ion capacitors, the cabbage‐like graphene delivers a reversible capacity of ≈176 mAh g−1. The stacking‐control approach provides a new pathway to control the microstructure of the graphene assembly and corresponding charge storage characteristics for energy storage applications.

     
    more » « less
  3. Two-dimensional (2-D) atomically thin graphene has exhibited overwhelming excellent properties over its bulk counterpart graphite, yet the broad applications and explorations of its unprecedented properties require a diversity of its geometric morphologies, beyond its inherently planar structures. In this study, we present a self-folding approach for converting 2-D planar free-standing graphene to 2-D and 3-D folded structures through the evaporation of its liquid solutions. This approach involves competition between the surface energy of the liquid, and the deformation energy and van der Waals energy of graphene. An energy-based theoretical model is developed to describe the self-folding process during liquid evaporation by incorporating both graphene dimensions and surface wettability. The critical elastocapillary length by liquid evaporation is extracted and exemplified by investigating three typical graphene geometries with rectangular, circular and triangular shapes. After the complete evaporation of the liquid, the critical self-folding length of graphene that can enable a stable folded pattern by van der Waals energy is also obtained. In parallel, full-scale molecular dynamics (MD) simulations are performed to monitor the evolution of deformation energies and folded patterns with liquid evaporation. The simulation results demonstrate the formation of 2-D folded racket-like and 3-D folded cone-like patterns and show remarkable agreement with theoretical predictions in both energy variations and folded patterns. This work offers quantitative guidance for controlling the self-folding of graphene and other 2-D materials into complex structures by liquid evaporation. 
    more » « less
  4. Abstract

    Molecular aggregation and crystallization during film coating play a crucial role in the realization of high‐performing organic photovoltaics. Strong intermolecular interactions and high solid‐state crystallinity are beneficial for charge transport. However, fast crystallization during thin‐film drying often limits the formation of the finely phase‐separated morphology required for efficient charge generation. Herein, the authors show that twisted acceptor‐donor‐acceptor (A‐D‐A) type compounds, containing an indacenodithiophene (IDT) electron‐rich core and two naphthalenediimide (NDI) electron‐poor units, leads to formation of mostly amorphous phases in the as‐cast film, which can be readily converted into more crystalline domains by means of thermal annealing. This design strategy solves the aforementioned conundrum, leading to an optimal morphology in terms of reduced donor/acceptor domain‐separation sizes (ca. 13 nm) and increased packing order. Solar cells based on these acceptors with a PBDB‐T polymer donor show a power conversion efficiency over 10% and stable morphology, which results from the combined properties of desirable excited‐state dynamics, high charge mobility, and optimal aggregation/crystallization characteristics. These results demonstrate that the twisted A‐D‐A motif featuring thermally‐induced crystallization behavior is indeed a promising alternative design approach toward more morphologically robust materials for efficient organic photovoltaics.

     
    more » « less
  5. Abstract

    Two cove‐edge graphene nanoribbons hPDI2‐Pyr‐hPDI2 (1) and hPDI3‐Pyr‐hPDI3 (2) are used as efficient electron‐transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power‐conversion efficiencies (PCEs) of 15.6 % and 16.5 % for1and2, respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that1and2act as efficient electron‐extraction materials. Additionally, compared with PC61BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.

     
    more » « less