skip to main content


Title: Global planning of accelerated degradation tests based on exponential dispersion degradation models
Abstract

The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost‐constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi‐analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three‐level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost‐constrained ADT plan, compared with conventional optimal plans by grid search algorithms.

 
more » « less
Award ID(s):
1904165
NSF-PAR ID:
10456544
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Naval Research Logistics (NRL)
Volume:
67
Issue:
6
ISSN:
0894-069X
Page Range / eLocation ID:
p. 469-483
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The uncertainties associated with technology‐specific and geography‐specific degradation rates make it difficult to calculate the levelized cost of energy, and thus the economic viability of solar energy. In this regard, millions of fielded photovoltaic modules may serve as a global testbed, where we can interpret the routinely collected time series maximum power point (MPP) data to assess the time‐dependent “health” of solar modules. The existing characterization methods, however, cannot effectively mine/decode these datasets to identify various degradation pathways. In this paper, we propose a new methodology called theSuns‐Vmp method, which offers a simple yet powerful approach to monitoring and diagnosing time‐dependent degradation of solar modules by using the MPP data. The algorithm reconstructs “IV” curves by using the natural illumination‐dependent and temperature‐dependent daily MPP characteristics as constraints to fit physics‐based circuit models. These synthetic IV characteristics are then used to determine the time‐dependent evolution of circuit parameters (eg, series resistance), which in turn allows one to deduce the dominant degradation modes (eg, solder bond failure) of solar modules. The proposed method has been applied to a test facility at the National Renewable Energy Laboratory. Our analysis indicates that the solar modules degraded at a rate of ~0.7%/year because of discoloration and weakened solder bonds. These conclusions are validated by independent outdoor IV measurements and on‐site imaging characterization. Integrated with physics‐based degradation models or machine learning algorithms, the method can also serve to predict the lifetime of photovoltaic systems.

     
    more » « less
  2. Rigid wet cooling media is a key component of direct and indirect evaporative cooling systems. Evaporation is the process of a substance in a liquid state changing to a gaseous state. When water evaporates only water molecules get evaporated and the other chemicals in the water are left behind on the surface as residue. Many studies have been conducted on how the change in air flow velocity, media depth, porosity and water distribution affect performance of the cooling system. The operational efficiency of the cooling media varies over its life cycle and depends primarily on temperature and speed of inlet air, water distribution system, type of pad and dimension of the pad.Although evaporative cooling when implemented with air-side economization enables efficiency gains, a trade-off between the system maintenance and its operational efficiency exists. In this study, the primary objective is to determine how calcium scale affects the overall performance of the cooling pad and the water system. Areas of the pad that are not wetted effectively allow air to pass through without being cooled and the edges between wetted and dry surface establish sites for scale formation. An Accelerated Degradation Testing (ADT) by rapid wetting and drying on the media pads at elevated levels of calcium is designed and conducted on the cellulose wet cooling media pad. This research focuses on monitoring the degradation that occurs over its usage and establish a key maintenance parameter for water used in media pad.As a novel study, preliminary tests were mandatory because there were no established standards for media pad degradation testing. Sump water conductivity is identified as the key maintenance parameter for monitoring sump replenishing and draining cycles which will result in reduced water usage. The average water conductivity in the sump during wetting cycles increases monotonically when ADT was performed on a new media pad. An empirical relationship between sump water conductivity and number of wetting cycles is proposed. This information will be very helpful for the manufacturers to guide their customers for maintenance of the media pad and sump water drain cycles. 
    more » « less
  3. In recent years, accelerated destructive degradation testing (ADDT) has been applied to obtain the reliability information of an asset (component) at use conditions when the component is highly reliable. In ADDT, degradation data are measured under stress levels more severe than usual so that more component failures can be observed in a short period. In the literature, most application-specific ADDT models assume a parametric degradation process under different accelerating conditions. Models without strong parametric assumptions are desirable to describe the complex ADDT processes. This paper proposes a general ADDT model that consists of a nonparametric part to describe the degradation path and a parametric part to describe the accelerating-variable effect. The proposed model not only provides more model flexibility with few assumptions, but also retains the physical mechanisms of degradation. Due to the complexity of parameter estimation, an efficient method based on self-adaptive differential evolution is developed to estimate model parameters. A simulation study is implemented to verify the developed methods. Two real-world case studies are conducted, and the results show the superior performance of the developed model compared with the existing methods. 
    more » « less
  4. Abstract

    A distribution transformer's thermal operating conditions can impose a limitation on the Hosting Capacity (HC) of an electrical distribution feeder for PV interconnections in the feeder's low‐voltage network. This is undesirable as it curtails PV interconnection of both residential and commercial customers in the secondary networks at a time when there are record numbers of interconnection requests by utilities' customers. The authors analyse the limitations on HC due to transformer loading and degradation considerations. Then, the paper proposes a battery energy storage system (BESS) dispatch strategy that will mitigate the limitation on distribution feeder HC by distribution transformers. Three scenarios of HC were simulated for a test network—HC evaluation without restrictions by the distribution transformer (scenario 1), HC evaluation with restrictions by the distribution transformer (scenario 2), and HC evaluation without restriction by the distribution transformer, and with the implementation of the proposed BESS mitigation strategy (scenario 3). Simulation results show that transformer lifetime is depleted to about 6% of expected lifetime for unrestricted HC in scenario 1. Curtailing the HC by 32% in scenario 2 improves the lifetime to 149% of expected lifetime. Implementing the proposed BESS in scenario 3 improves the transformer lifetime to 127% and increases the HC by 62% above the curtailed value in scenario 2, and by 10% above the original HC in scenario 1. The BESS strategy implementation produced cost savings of 49% and 27% of the transformer cost in scenarios 2 and 3, respectively, due to deferred transformer replacement. Conversely, there is a 1600% replacement cost incurred in scenario 1, which underscores the need for a mitigation strategy. The proposed BESS strategy does not only improve the HC of a distribution feeder but also increases a distribution transformer's lifetime leading to replacement cost savings.

     
    more » « less
  5. Abstract Background

    Cellulose degradation by cellulases has been studied for decades due to the potential of using lignocellulosic biomass as a sustainable source of bioethanol. In plant cell walls, cellulose is bonded together and strengthened by the polyphenolic polymer, lignin. Because lignin is tightly linked to cellulose and is not digestible by cellulases, is thought to play a dominant role in limiting the efficient enzymatic degradation of plant biomass. Removal of lignin via pretreatments currently limits the cost-efficient production of ethanol from cellulose, motivating the need for a better understanding of how lignin inhibits cellulase-catalyzed degradation of lignocellulose. Work to date using bulk assays has suggested three possible inhibition mechanisms: lignin blocks access of the enzyme to cellulose, lignin impedes progress of the enzyme along cellulose, or lignin binds cellulases directly and acts as a sink.

    Results

    We used single-molecule fluorescence microscopy to investigate the nanoscale dynamics of Cel7A fromTrichoderma reesei, as it binds to and moves along purified bacterial cellulose in vitro. Lignified cellulose was generated by polymerizing coniferyl alcohol onto purified bacterial cellulose, and the degree of lignin incorporation into the cellulose meshwork was analyzed by optical and electron microscopy. We found that Cel7A preferentially bound to regions of cellulose where lignin was absent, and that in regions of high lignin density, Cel7A binding was inhibited. With increasing degrees of lignification, there was a decrease in the fraction of Cel7A that moved along cellulose rather than statically binding. Furthermore, with increasing lignification, the velocity of processive Cel7A movement decreased, as did the distance that individual Cel7A molecules moved during processive runs.

    Conclusions

    In an in vitro system that mimics lignified cellulose in plant cell walls, lignin did not act as a sink to sequester Cel7A and prevent it from interacting with cellulose. Instead, lignin both blocked access of Cel7A to cellulose and impeded the processive movement of Cel7A along cellulose. This work implies that strategies for improving biofuel production efficiency should target weakening interactions between lignin and cellulose surface, and further suggest that nonspecific adsorption of Cel7A to lignin is likely not a dominant mechanism of inhibition.

     
    more » « less