skip to main content

Title: Life in the canopy: community trait assessments reveal substantial functional diversity among fern epiphytes
The expansion of angiosperm‐dominated forests in the Cretaceous and early Cenozoic had a profound effect on terrestrial biota by creating novel ecological niches. The majority of modern fern lineages are hypothesized to have arisen in response to this expansion, particularly fern epiphytes that radiated into the canopy. Recent evidence, however, suggests that epiphytism does not correlate with increased diversification rates in ferns, calling into question the role of the canopy habitat in fern evolution. To understand the role of the canopy in structuring fern community diversity, we investigated functional traits of fern sporophytes and gametophytes across a broad phylogenetic sampling on the island of Moorea, French Polynesia, including > 120 species and representatives of multiple epiphytic radiations. While epiphytes showed convergence in small size and a higher frequency of noncordate gametophytes, they showed greater functional diversity at the community level relative to terrestrial ferns. These results suggest previously overlooked functional diversity among fern epiphytes, and raise the hypothesis that while the angiosperm canopy acted as a complex filter that restricted plant size, it also facilitated diversification into finely partitioned niches. Characterizing these niche axes and adaptations of epiphytic ferns occupying them should be a priority for future pteridological research.
Authors:
; ;
Award ID(s):
1656801
Publication Date:
NSF-PAR ID:
10166918
Journal Name:
New Phytologist
ISSN:
0028-646X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims Through careful field examination of the growth habit of the gametophytes and sporophytes of Hymenasplenium volubile across an ontogenetic series, we aim to understand better the evolution of epiphytism in this poorly understood group of ferns Methods We made field observations of H. volubile sporophytes and gametophytes, and brought specimens back to the lab for microscopic analysis. In the field, sporophytes at each ontogenetic stage were photographed to document the species’ growth habit. We used an existing phylogeny to optimize growth form of New World Hymenasplenium. Key Results Young sporophytes were at first fully epiphytic and produced one or two long feeding roots that extend to the soil where they branch profusely. The feeding roots remain in contact with the soil throughout the life of the plant. Thus, H. volubile is a hemiepiphyte. While immature, gametophytes are appressed to the tree trunk, but, as their gametangia mature, their lower margin lifts upward, imparting a shelf-like appearance to the thallus. The thallus attaches to the substrate by branched rhizoids produced along the margin of the thallus in contact with the substrate. Conclusions Hemiepiphytes are a key link in the evolution of epiphytic ferns and may act asmore »a bridge between the forest floor and the canopy. Our finding is the first report of hemiepiphytism in Aspleniaceae, a large lineage with many epiphytic and terrestrial taxa. This work serves as an important model to understand the evolution of epiphytism in this group specifically and in ferns in general. The majority of our understanding of fern gametophyte biology is derived from laboratory studies. Our efforts represent a fundamental contribution to understanding fern gametophyte ecology in a field setting.« less
  2. Abstract A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in femalemore »or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.« less
  3. Melzer, Rainer (Ed.)
    Abstract The alternation of generations in land plants occurs between the sporophyte phase and the gametophyte phase. The sporophytes of seed plants develop self-maintained, multicellular meristems, and these meristems determine plant architecture. The gametophytes of seed plants lack meristems and are heterotrophic. In contrast, the gametophytes of seed-free vascular plants, including ferns, are autotrophic and free-living, developing meristems to sustain their independent growth and proliferation. Compared with meristems in the sporophytes of seed plants, the cellular mechanisms underlying meristem development in fern gametophytes remain largely unknown. Here, using confocal time-lapse live imaging and computational segmentation and quantification, we determined different patterns of cell divisions associated with the initiation and proliferation of two distinct types of meristems in gametophytes of two closely related Pteridaceae ferns, Pteris vittata and Ceratopteris richardii. Our results reveal how the simple timing of a switch between two meristems has considerable consequences for the divergent gametophyte morphologies of the two ferns. They further provide evolutionary insight into the function and regulation of gametophyte meristems in seed-free vascular plants.
  4. Some lineages radiate spectacularly when colonizing a region, but others do not. Large radiations are often attributed to species’ adaptation into niches, or to other drivers, such as biogeography including dispersal ability and spatial structure of the landscape. Here we aim to disentangle the factors determining radiation size, by modeling simplified scenarios without the complexity of explicit niches. We build a spatially structured neutral model free from niches and incorporating a form of protracted speciation that accounts for gene flow between populations. We find that a wide range of radiation sizes are possible in this model depending on the combination of geographic isolation and species’ dispersal ability. At extremely low rates of dispersal between patches, each patch maintains its own endemic species. Intermediate dispersal rates foster larger radiations as they allow occasional movement between patches whilst sufficiently restricting gene flow to support further speciation in allopatry. As dispersal rates increase further, a critical point is reached at which demographically identical lineages may vary greatly in radiation size due to rare and stochastic dispersal events. At the critical point in dispersal frequency, some lineages remain a single species for a comparatively long time, whilst others with identical characteristics produce the largestmore »radiations of all via a new mechanism for rapid radiation that we term a ‘radiation cascade’. Given a single species covering many patches connected with gene flow, a radiation cascade is triggered when stochastic dispersal is unusually low for a period, leading to an initial speciation event. This speciation means there are fewer individuals per species and thus further reduced gene flow between conspecifics. Reduced gene flow in turn makes it easier for further speciation to occur. During a radiation cascade, dispersal of individuals between patches continues at the same rate as before, but due to the increasing diversity it primarily introduces novel species that will later speciate, rather than adding to gene flow of existing species. Once a radiation cascade begins, it continues rapidly until it is arrested by a new equilibrium between speciation and extinction. We speculate that such radiation cascades may occur more generally and are not only present in neutral models. This process may help to explain rapid radiation, and the extreme radiation sizes of certain lineages with dispersing ancestors. Whilst niches no doubt play a role in community assembly, our findings lead us to question whether diversification and adaptation into niches is sometimes an effect of speciation and rapid radiation, rather than its cause.« less
  5. While modern forests have their origin in the diversification and expansion of angiosperms in the late Cretaceous and early Cenozoic, it is unclear if the rise of closed-canopy tropical rainforests preceded or followed the end-Cretaceous extinction. The “canopy effect” is a strong vertical gradients in the carbon isotope (δ13C) composition of leaves in modern closed-canopy forests that could serve as a proxy signature for canopy structure in ancient forests. To test this, we report measurements of the carbon isotope composition of nearly 200 fossil angiosperm leaves from two localities in the Paleocene Cerrejón Formation and one locality in the Maastrichtian Guaduas Formation. Leaves from one Cerrejón fossil assemblage deposited in a small fluvial channel exhibited a 6.3‰ range in δ13C, consistent with a closed-canopy forest. Carbon isotope values from lacustrine sediments in the Cerrejón Fm. had a range of 3.3‰, consistent with vegetation along a lake edge. An even narrower range of δ13C values (2.7‰) was observed for a leaf assemblage recovered from the Cretaceous Guaduas Fm., and suggests vegetation with an open canopy structure. Carbon isotope fractionation by late Cretaceous and early Paleogene leaves was in all cases similar to modern relatives, consistent with estimates of low atmospheric CO2more »during this time period. This study confirms other lines of evidence suggesting closed-canopy forests in tropical South America existed by the late Paleocene, and fails to find isotopic evidence for a closed-canopy forest in the Cretaceous.« less