skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local structure of Sr 2 CuO 3.3 , a 95 K cuprate superconductor without CuO 2 planes
The local structure of the highly “overdoped” 95 K superconductor Sr 2 CuO 3.3 determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to the c axis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO 2 planes, magnetization along the c axis, and a termination of the superconductivity when the excess charge on the CuO 2 Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O–based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO 2 planes while retaining exceptionally high transition temperatures.  more » « less
Award ID(s):
1928874
PAR ID:
10167131
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
9
ISSN:
0027-8424
Page Range / eLocation ID:
4565 to 4570
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A crucial issue in cuprates is the extent and mechanism of the coupling of the lattice to the electrons and the superconductivity. Here we report Cu K edge extended X-ray absorption fine structure measurements elucidating the internal quantum tunneling polaron (iqtp) component of the dynamical structure in two heavily overdoped superconducting cuprate compounds, tetragonal YSr 2 Cu 2.75 Mo 0.25 O 7.54 with superconducting critical temperature, T c = 84 K and hole density p = 0.3 to 0.5 per planar Cu, and the tetragonal phase of Sr 2 CuO 3.3 with T c = 95 K and p = 0.6. In YSr 2 Cu 2.75 Mo 0.25 O 7.54 changes in the Cu-apical O two-site distribution reflect a sequential renormalization of the double-well potential of this site beginning at T c , with the energy difference between the two minima increasing by ∼6 meV between T c and 52 K. Sr 2 CuO 3.3 undergoes a radically larger transformation at T c , >1-Å displacements of the apical O atoms. The principal feature of the dynamical structure underlying these transformations is the strongly anharmonic oscillation of the apical O atoms in a double-well potential that results in the observation of two distinct O sites whose Cu–O distances indicate different bonding modes and valence-charge distributions. The coupling of the superconductivity to the iqtp that originates in this nonadiabatic coupling between the electrons and lattice demonstrates an important role for the dynamical structure whereby pairing occurs even in a system where displacements of the atoms that are part of the transition are sufficiently large to alter the Fermi surface. The synchronization and dynamic coherence of the iqtps resulting from the strong interactions within a crystal would be expected to influence this process. 
    more » « less
  2. Because of its sensitivity to the instantaneous structure factor, S(Q,t = 0), Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for probing the dynamic structure of condensed matter systems in which the charge and lattice dynamics are coupled. When applied to hole-doped cuprate superconductors, EXAFS has revealed the presence of internal quantum tunneling polarons (IQTPs). An IQTP arises in EXAFS as a two-site distribution for certain Cu–O pairs, which is also duplicated in inelastic scattering but not observed in standard diffraction measurements. The Cu–Sr pair distribution has been found to be highly anharmonic and strongly correlated to both the IQTPs and to superconductivity, as, for example, in YSr2Cu2.75Mo0.25O7.54(Tc=84 K). In order to describe such nontrivial, anharmonic charge-lattice dynamics, we have proposed a model Hamiltonian for a prototype six-atom cluster, in which two Cu-apical-O IQTPs are charge-transfer bridged through Cu atoms by an O atom in the CuO2 plane and are anharmonically coupled via a Sr atom. By applying an exact diagonalization procedure to this cluster, we have verified that our model indeed produces an intricate interplay between charge and lattice dynamics. Then, by using the Kuramoto model for the synchronization of coupled quantum oscillators, we have found a first-order phase transition for the IQTPs into a synchronized, phase-locked phase. Most importantly, we have shown that this transition results specifically from the anharmonicity. Finally, we have provided a phase diagram showing the onset of the phase-locking of IQTPs as a function of the charge-lattice and anharmonic couplings in our model. We have found that the charge, initially confined to the apical oxygens, is partially pumped into the CuO2 plane in the synchronized phase, which suggests a possible connection between the synchronized dynamic structure and high-temperature superconductivity (HTSC) in doped cuprates. 
    more » « less
  3. Abstract The shape of 3 d -orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the $${d}_{{x}^{2}-{y}^{2}}$$ d x 2 − y 2 orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu L 3 and Pr M 5 resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa 2 Cu 3 O 7 , where the Pr f -electrons create a direct orbital bridge between CuO 2 planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials. 
    more » « less
  4. It is well known that in the high-temperature superconductor YBa2Cu3O7-x (YBCO), oxygen vacancies (VO) control the carrier concentration, its critical current density and transition temperature. In this work, it is revealed that VO also allow the accommodation of local strain fields caused by large-scale defects within the crystal. We show that the nanoscale strain associated with Y2Ba4Cu8O18 (Y124) intergrowths—that are common defects in YBCO—strongly affect the venue and concentration of VO. Local probe measurements in conjunction with density-functional-theory calculations indicate a strain‐driven reordering of VO from the commonly observed CuO chains towards the bridging apical sites located in the BaO plane and bind directly to the superconducting CuO2 planes. Our findings have strong implications on the physical properties of the YBCO, as the presence of apical VO alters the transfer of carriers to the CuO2 planes and creates structural changes that affect the Cu-O bonds in the superconducting planes. In addition, the revelation of apical VO also has implications on modulating critical current densities and enhancing vortex pinning. 
    more » « less
  5. Stephen E. Nagler (Ed.)
    One of the strongest justifications for the continued search for superconductivity within the single-band Hubbard Hamiltonian originates from the apparent success of single-band ladder-based theories in predicting the occurrence of superconductivity in the cuprate coupled-ladder compound Sr{14−x}Ca{x}Cu{24}O{41}. Recent theoretical works have, however, shown the complete absence of quasi-long-range superconducting correlations within the hole-doped multiband ladder Hamiltonian including realistic Coulomb repulsion between holes on oxygen sites and oxygen-oxygen hole hopping. Experimentally, superconductivity in Sr{14−x}Ca{x}Cu{24}O{41} occurs only under pressure and is preceded by dramatic transition from one to two dimensions that remains not understood. We show that understanding the dimensional crossover requires adopting a valence transition model within which there occurs transition in Cu-ion ionicity from +2 to +1 , with transfer of holes from Cu to O ions [S. Mazumdar, Phys. Rev. B 98, 205153 (2018)]. The driving force behind the valence transition is the closed-shell electron configuration of Cu^{1+} , a feature shared by cations of all oxides with a negative charge-transfer gap. We make a falsifiable experimental prediction for Sr{14−x}Ca{x}Cu{24}O{41} and discuss the implications of our results for layered two-dimensional cuprates. 
    more » « less