skip to main content


Title: Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution
Abstract The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.  more » « less
Award ID(s):
1933521
NSF-PAR ID:
10167298
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
71
Issue:
11
ISSN:
0022-0957
Page Range / eLocation ID:
3361 to 3373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Zygnematophyceae green algae (ZGA) have been shown to be the closest relatives of land plants. Three nuclear genomes ( Spirogloea muscicola , Mesotaenium endlicherianum , and Penium margaritaceum ) of ZGA have been recently published, and more genomes are underway. Here we analyzed two Zygnema circumcarinatum strains SAG 698-1a (mating +) and SAG 698-1b (mating −) and found distinct cell sizes and other morphological differences. The molecular identities of the two strains were further investigated by sequencing their 18S rRNA, psaA and rbcL genes. These marker genes of SAG 698-1a were surprisingly much more similar to Z. cylindricum (SAG 698-2) than to SAG 698-1b. Phylogenies of these marker genes also showed that SAG 698-1a and SAG 698-1b were well separated into two different Zygnema clades, where SAG 698-1a was clustered with Z. cylindricum , while SAG 698-1b was clustered with Z. tunetanum . Additionally, physiological parameters like ETR max values differed between SAG 698-1a and SAG 698-1b after 2 months of cultivation. The de-epoxidation state (DEPS) of the xanthophyll cycle pigments also showed significant differences. Surprisingly, the two strains could not conjugate, and significantly differed in the thickness of the mucilage layer. Additionally, ZGA cell walls are highly enriched with sticky and acidic polysaccharides, and therefore the widely used plant nuclear extraction protocols do not work well in ZGA. Here, we also report a fast and simple method, by mechanical chopping, for efficient nuclear extraction in the two SAG strains. More importantly, the extracted nuclei were further used for nuclear genome size estimation of the two SAG strains by flow cytometry (FC). To confirm the FC result, we have also used other experimental methods for nuclear genome size estimation of the two strains. Interestingly, the two strains were found to have very distinct nuclear genome sizes (313.2 ± 2.0 Mb in SAG 698-1a vs. 63.5 ± 0.5 Mb in SAG 698-1b). Our multiple lines of evidence strongly indicate that SAG 698-1a possibly had been confused with SAG 698-2 prior to 2005, and most likely represents Z. cylindricum or a closely related species. 
    more » « less
  2. Abstract Background Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly. Results As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100–300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization. Conclusions Our results indicate that even in the “simple” case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone. 
    more » « less
  3. Abstract

    The inverted repeat (IR) lacking clade (IRLC) is a monophyletic group within the Papilionoideae subfamily of Fabaceae where plastid genomes (plastomes) do not contain the large IR typical of land plants. Recently, an IRLC legume,Medicago minima, was found to have regrown a ~9 kb IR that contained a number of canonical IR genes, and closely relatedM. lupulinacontained an incomplete IR of ~425 bp. Complete plastomes were generated for seven additional species, putative members of theM. minimaclade. Polymerase chain reaction was employed to investigate the presence of the IR acrossM. minimaandM. lupulinaincluding individuals of nine and eight Eurasian and North African accessions and 15 and 14 Texas populations, respectively. While no sequence similar to the ~9 kb IR was detected among the seven newly sequenced plastomes, all Eurasian and North African accessions ofM. minimacontained the IR. Variation in IR extent was detected within and between the Texas populations. Expansions of 13 bp and 11 bp occurred at the boundaries of both IR/small single‐copy regions, and populations had one or the other expansion, but not both. Expansion of the IR was not detected in the accessions from Eurasia and North Africa suggesting recent mutations yielded at least two additional plastid haplotypes inM. minima.

     
    more » « less
  4. Molecular surveys are leading to the discovery of many new cryptic species of marine algae. This is particularly true for red algal intertidal species, which exhibit a high degree of morphological convergence.DNAsequencing of recent collections ofGelidiumalong the coast of California,USA, identified two morphologically similar entities that differed inDNAsequence from existing species. To characterize the two new species ofGelidiumand to determine their evolutionary relationships to other known taxa, phylogenomic, multigene analyses, and morphological observations were performed. Three complete mitogenomes and five plastid genomes were deciphered, including those from the new species candidates and the type materials of two closely related congeners. The mitogenomes contained 45 genes and had similar lengths (24,963–24,964 bp). The plastid genomes contained 232 genes and were roughly similar in size (175,499–177,099 bp). The organellar genomes showed a high level of gene synteny. The twoGelidiumspecies are diminutive, turf‐forming, and superficially resemble several long established species from the Pacific Ocean. The phylogenomic analysis, multigene phylogeny, and morphological evidence confirms the recognition and naming of two new species, describe herein asG. gabrielsoniiandG. kathyanniae. On the basis of the monophyly ofG. coulteri,G. gabrielsonii,G. galapagense, andG. kathyanniae, we suggest that this lineage likely evolved in California. Organellar genomes provide a powerful tool for discovering cryptic intertidal species and they continue to improve our understanding of the evolutionary biology of red algae and the systematics of the Gelidiales.

     
    more » « less
  5. The genus Trifolium is the largest of the tribe Trifolieae in the subfamily Papilionoideae (Fabaceae). The paucity of mitochondrial genome (mitogenome) sequences has hindered comparative analyses among the three genomic compartments of the plant cell (nucleus, mitochondrion and plastid). We assembled four mitogenomes from the two subgenera (Chronosemium and Trifolium) of the genus. The four Trifolium mitogenomes were compact (294,911–348,724 bp in length) and contained limited repetitive (6.6–8.6%) DNA. Comparison of organelle repeat content highlighted the distinct evolutionary trajectory of plastid genomes in a subset of Trifolium species. Intracellular gene transfer (IGT) was analyzed among the three genomic compartments revealing functional transfer of mitochondrial rps1 to nuclear genome along with other IGT events. Phylogenetic analysis based on mitochondrial and nuclear rps1 sequences revealed that the functional transfer in Trifolieae was independent from the event that occurred in robinioid clade that includes genus Lotus. A novel, independent fission event of ccmFn in Trifolium was identified, caused by a 59 bp deletion. Fissions of this gene reported previously in land plants were reassessed and compared with Trifolium. 
    more » « less