The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengthsmore »
Octahedral iron( iv )–tosylimido complexes exhibiting single electron-oxidation reactivity
High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron( iv )–tosylimido complexes [Fe IV (NTs)(MePy 2 tacn)](OTf) 2 ( 1(IV)NTs ) and [Fe IV (NTs)(Me 2 (CHPy 2 )tacn)](OTf) 2 ( 2(IV)NTs ), (MePy 2 tacn = N -methyl- N , N -bis(2-picolyl)-1,4,7-triazacyclononane, and Me 2 (CHPy 2 )tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)NTs and 2(IV)NTs are rare examples of octahedral iron( iv )–imido complexes and are isoelectronic analogues of the recently described iron( iv )–oxo complexes [Fe IV (O)(L)] 2+ (L = MePy 2 tacn and Me 2 (CHPy 2 )tacn, respectively). 1(IV)NTs and 2(IV)NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1 H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [Fe III (HNTs)(L)] 2+ , 1(III)–NHTs (L = MePy 2 tacn) and 2(III)–NHTs (L = Me 2 (CHPy 2 )tacn) have been isolated after the decay of 1(IV)NTs and 2(IV)NTs in solution, spectroscopically characterized, and the molecular structure of [Fe III (HNTs)(MePy 2 tacn)](SbF 6 ) 2 determined by single crystal X-ray diffraction. Reaction of 1(IV)NTs and 2(IV)NTs with different more »
- Award ID(s):
- 1665391
- Publication Date:
- NSF-PAR ID:
- 10167485
- Journal Name:
- Chemical Science
- Volume:
- 10
- Issue:
- 41
- Page Range or eLocation-ID:
- 9513 to 9529
- ISSN:
- 2041-6520
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A series of Ag( i ) and Cu( i ) complexes [Ag 3 (L 1 ) 2 ][PF 6 ] 3 ( 8 ), [Ag 3 (L 2 ) 2 ][PF 6 ] 3 ( 9 ), [Cu(L 1 )][PF 6 ] ( 10 ) and [Cu(L 2 )][PF 6 ] ( 11 ) have been synthesized by reactions of the tridentate amine-bis(N-heterocyclic carbene) ligand precursors [H 2 L 1 ][PF 6 ] 2 ( 6 ) and [H 2 L 2 ][PF 6 ] 2 ( 7 ) with Ag 2 O and Cu 2 O, respectively. Complexes 10 and 11 can also be obtained by transmetalation of 8 and 9 , respectively, with 3.0 equiv. of CuCl. A heterometallic Cu/Ag–NHC complex [Cu 2 Ag(L 1 ) 2 (CH 3 CN) 2 ][PF 6 ] 3 ( 12 ) is formed by the reaction of 8 with 2.0 equiv. of CuCl. All complexes have been characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction studies. The luminescence properties of 10–12 in solution and the solid state have been studied. At room temperature, 10–12 exhibit evident luminescence in solution and the solid state. The emission wavelengths aremore »
-
While alkylperoxomanganese(iii) (MnIII–OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S− ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII –OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII–OOR complexes using a new amide-containing N5− ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)- N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OO)tBu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with t BuOOH and CmOOH, respectively. Both of the new Mn III–OOR complexes are stable at room-temperature (t1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII–OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII (OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII–OOR complexes by O–O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)] + with PPh3 providedmore »
-
A family of stable and otherwise selectively unachievable 2,6-bisimino-4- R -1,4-dihydropyridinate aluminium (III) dialkyl complexes [AlR' 2 (4-R- i PrBIPH)] (R = Bn, Allyl; R′ = Me, Et, i Bu) have been synthesized, taking advantage of a method for the preparation of the corresponding 4- R -1,4-dihydropiridine precursors developed in our group. All the dihydropyrdinate(−1) dialkyl aluminium complexes have been fully characterized by 1 H- 13 C-NMR, elemental analysis and in the case 2′a , also by X-ray diffraction studies. Upon heating in toluene solution at 110 °C, the dimethyl derivatives 2a and 2′a dimerize selectively through a double cycloaddition. This reaction leads to the formation of two new C–C bonds that involve the both meta positions of the two 4- R -1,4-dihydropyridinate fragments, resulting the binuclear aluminium species [Me 2 Al(4-R- i PrHBIP)] 2 (R = Bn ( 3a ); allyl ( 3′a )). Experimental kinetics showed that the dimerization of 2′a obeys second order rate with negative activation entropy, which is consistent with a bimolecular rate-determining step. Controlled methanolysis of both 3a and 3′a release the metal-free dimeric bases, (4-Bn- i PrHBIPH) 2 and (4-allyl- i PrHBIPH) 2 , providing a convenient route to these potentially useful ditopicmore »
-
A series of cerium( iv ) mixed-ligand guanidinate–amide complexes, {[(Me 3 Si) 2 NC(N i Pr) 2 ] x Ce IV [N(SiMe 3 ) 2 ] 3−x } + ( x = 0–3), was prepared by chemical oxidation of the corresponding cerium( iii ) complexes, where x = 1 and 2 represent novel complexes. The Ce( iv ) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy ( n f ) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce( iv ) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce( iv ) oxidation state with more guanidinate ligands. Moreover, the Ce( iv ) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals thatmore »