skip to main content


Title: Transient-State Analysis of Human Isocitrate Dehydrogenase I: Accounting for the Interconversion of Active and Non-Active Conformational States
Award ID(s):
1904480
NSF-PAR ID:
10167999
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biochemistry
Volume:
58
Issue:
52
ISSN:
0006-2960
Page Range / eLocation ID:
5366 to 5380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation and reactivities of [Cu–O–M] 2+ species (M = Ti–Cu, Zr–Mo and Ru–Ag) in metal-exchanged zeolites, as well as stabilities of these species towards autoreduction by O 2 elimination are investigated with density functional theory. These species were investigated in zeolite mordenite in search of insights into active site formation mechanisms, the relationship between stability and reactivity as well as discovery of heterometallic species useful for isothermal methane-to-methanol conversion (MMC). Several [Cu–O–M] 2+ species (M = Ti–Cr and Zr–Mo) are substantially more stable than [Cu 2 O] 2+ . Other [Cu–O–M] 2+ species, (M = Mn–Ni and Ru–Ag) have similar formation energies to [Cu 2 O] 2+ , to within ±10 kcal mol −1 . Interestingly, only [Cu–O–Ag] 2+ is more active for methane activation than [Cu 2 O] 2+ . [Cu–O–Ag] 2+ is however more susceptible to O 2 elimination. By considering the formation energies, autoreduction, cost and activity towards the methane C–H bond, we can only conclude that [Cu 2 O] 2+ is best suited for MMC. Formation of [Cu 2 O] 2+ is initiated by proton transfer from aquo ligands to the framework and proceeds mostly via dehydration steps. Its μ-oxo bridge is formed via water-assisted condensation of two hydroxo groups. To evaluate the relationship between [Cu 2 O] 2+ and other active sites, we also examined the formation energies of other species. The formation energies follow the trend: isolated [Cu–OH] + < paired [Cu–OH] + < [Cu 2 O] 2+ < [Cu 3 O 3 ] 2+ . Inclusion of Gibbs free-energy corrections indicates activation temperatures of 257, 307 and 327 and 331 °C for isolated [Cu–OH] + , paired [Cu–OH] + , [Cu 2 O] 2+ and [Cu 3 O 3 ] 2+ , respectively. The provocative nature of the lower-than-expected activation temperature for isolated [Cu–OH] + species is discussed. 
    more » « less
  2. Abstract We begin here a series of papers examining the chromospheric and coronal properties of solar active regions. This first paper describes an extensive data set of images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory curated for large-sample analysis of this topic. Based on (and constructed to coordinate with) the “Active Region Patches” as identified by the pipeline data analysis system for the Helioseismic and Magnetic Imager on the same mission (the “HARPs”), the “AIA Active Region Patches” (AARPs), described herein, comprise an unbiased multiwavelength set of FITS files downsampled spatially only by way of HARP-centered patch extractions (full spatial sampling is retained), and downsampled in the temporal domain but still able to describe both short-lived kinematics and longer-term trends. The AARPs database enables physics-informed parameterization and analysis using nonparametric discriminant analysis in Paper II of this series, and is validated for analysis using differential emission measure techniques. The AARP data set presently covers mid-2010 through 2018 December, is ≈9 TB in size, and is available through the Solar Data Analysis Center. 
    more » « less
  3. We offer our opinion on the benefits of integration of insights from active matter physics with principles of regulatory interactions and control to develop a field we term “smart active matter”. This field can provide insight into important principles in living systems as well as aid engineering of responsive, robust and functional collectives. 
    more » « less