skip to main content


Title: Density and Velocity Profiles for Large-scale Cosmological Filaments
In preparation for comparison with the Arecibo Pisces-Perseus Supercluster Survey (APPSS), we present the theoretically expected density and velocity profiles for large-scale (~ 50 Mpc) filaments from the Millennium simulation. We use an observationally-friendly method to identify filaments using the positions of large groups of galaxies, and average filaments together to find the typical structure of a filament in terms of cylindrical density profile and velocity infall profile. Both profiles can be fit by simple functions, but show a large scatter across the population of filaments. We are in the process of categorizing filaments to facilitate comparison with observations of specific filaments, like the Pisces-Perseus Supercluster filament. This work has been supported by NSF grant AST-1637339.  more » « less
Award ID(s):
1637339
NSF-PAR ID:
10168027
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
American Astronomical Society meeting
Volume:
235
ISSN:
2152-887X
Page Range / eLocation ID:
279.17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present theoretical expectations for infall toward supercluster-scale cosmological filaments, motivated by the Arecibo Pisces–Perseus Supercluster Survey (APPSS) to map the velocity field around the Pisces–Perseus Supercluster (PPS) filament. We use a minimum spanning tree applied to dark matter halos the size of galaxy clusters to identify 236 large filaments within the Millennium simulation. Stacking the filaments along their principal axes, we determine a well-defined, sharp-peaked velocity profile function that can be expressed in terms of the maximum infall rateVmaxand the distanceρmaxbetween the location of maximum infall and the principal axis of the filament. This simple, two-parameter functional form is surprisingly universal across a wide range of linear mass densities.Vmaxis positively correlated with the halo mass per length along the filament, andρmaxis negatively correlated with the degree to which the halos are concentrated along the principal axis. We also assess an alternative, single-parameter method usingV25, the infall rate at a distance of 25 Mpc from the axis of the filament. Filaments similar to the PPS haveVmax=612±116 km s−1,ρmax=8.9±2.1Mpc, andV25= 329 ± 68 km s−1. We create mock observations to model uncertainties associated with viewing angle, lack of three-dimensional velocity information, limited sample size, and distance uncertainties. Our results suggest that it would be especially useful to measure infall for a larger sample of filaments to test our predictions for the shape of the infall profile and the relationships among infall rates and filament properties.

     
    more » « less
  2. null (Ed.)
    We present a method for estimating the amount of matter in large-scale (approximately 50 Mpc) filaments using the surrounding velocity infall pattern, based on 242 filaments in the Millennium simulation. We identify filaments using a minimal spanning tree to link large groups and clusters, and find the axis of each filament using a weighted principle component analysis. We improve our previous determination of a typical infall velocity profile by rescaling the profile for each filament by the distance where the infall speed reaches a maximum. We use the resulting average profile to determine a two-parameter piecewise function that can be used to estimate the maximum infall speed and location for individual filaments. Finally, we present the correlation between the maximum infall speed and the mass of the filament. These results will be used as part of the Arecibo Pisces-Perseus Supercluster Survey (APPSS), a project to map the infall pattern around the Pisces-Perseus Supercluster filament. This work is supported by NSF grant AST-1637339. 
    more » « less
  3. The Arecibo Pisces-Perseus Supercluster Survey (APPSS) is an observing project undertaken by the Undergraduate ALFALFA Team that aims to detect HI in galaxies in the Pisces-Perseus neighborhood and analyze the dynamics and the properties of the galaxies. The galaxies targeted in APPSS are suspected from their optical properties (color, morphology, surface brightness) to lie in the Pisces-Perseus Supercluster (PPS) but are below the detection threshold of the ALFALFA blind HI survey. Here we present results for galaxies targeted in a strip across the PPS region in declination from 30o to 32o. This region is along the main filament of the supercluster and includes objects such as the Pisces Cluster. The data was recorded by the L-Band Wide receiver of the Arecibo Observatory. Data reduction was done using routines derived for the APPSS in IDL. After baselining the spectra and sifting out radio interference, we fit either a gaussian or two-horned profile to their 21-centimeter line to measure the HI line flux density, velocity, and velocity width. From these parameters we calculate distances, hydrogen gas mass, and rotational velocities. As expected, the galaxies analyzed in this slice of declination have consistently lower mass than the ALFALFA detections thus extending the sampling of galaxies within the PPS. The combined ALFALFA and APPSS HI line detections will be used for future applications of the Baryonic Tully-Fisher Relation in this region. This research has been supported by NSF grant NSF/AST-1714828 to M.P. Haynes and by the Brinson Foundation for the Arecibo Pisces-Perseus Supercluster Survey (APPSS). 
    more » « less
  4. null (Ed.)
    The Arecibo Pisces-Perseus Supercluster Survey (APPSS) aims to observationally measure the dark matter mass density of Pisces-Perseus by detecting the peculiar velocities of galaxies falling onto the supercluster. To do this, APPSS will measure galaxies' distances using the Baryonic Tully Fisher Relation (BTFR), which relates a galaxy's baryonic mass and rotational velocity. Recovering the signature of infall as robustly as possible requires a careful choice of rotational velocity measurement, as the use of various velocity definitions changes the scatter and systematics of the relation. We introduce and compare multiple automated methods for measuring a galaxy's rotational velocity using its unresolved line profile. The velocities discussed include global HI profile width measures commonly reported in large surveys, velocity widths derived from best-fit parametrizations to profiles, and velocity widths derived using more novel methods including the spectral line's curve of growth and neural network-derived velocities which incorporate information about the profile's width and shape. We compare these velocity measures by finding best-fit BTFR relations for two samples of galaxies - the SPARC sample and a selected sample of gas-dominated ALFALFA galaxies (Papastergis et al. 2016). With these best-fit BTFRs, we compare intrinsic scatters and residual correlations with source properties to investigate how velocity choice affects the absolute and systematic uncertainties of BTFR-derived galaxy distances. This research is supported by NSF/AST-1714828 and the Brinson Foundation. 
    more » « less
  5. The Arecibo Pisces-Perseus Supercluster Survey (APPSS) will provide strong observational constraints on the infall rate onto the main filament of the Pisces-Perseus Supercluster. The survey data consist of HI emission-line galaxies in the PPS region, obtained primarily at the Arecibo Observatory. Here we present data from Declination strips 27 and 29, which include 308 target galaxies, and describe our method for deducing the dark matter distribution in the filament from galaxy peculiar velocities by comparison to similar filaments in the Millennium simulation. This work has been supported by NSF grants AST-1211005 and AST-1637339. 
    more » « less