skip to main content


Title: Coupled Stress-Dependent Groundwater Flow-Deformation Model to Predict Land Subsidence in Basins with Highly Compressible Deposits
In this study, a stress-dependent groundwater model, MODFLOW-SD, has been developed and coupled with the nonlinear subsidence model, NDIS, to predict vertical deformation occurring in basins with highly compressible deposits. The MODFLOW-SD is a modified version of MODFLOW (the USGS Modular Three-Dimensional Groundwater Flow Model) with two new packages, NONK and NONS, to update hydraulic conductivity and skeletal specific storage due to change in effective stress. The NDIS package was developed based on Darcy–Gersevanov Law and bulk flux to model land subsidence. Results of sample simulations run for a conceptual model showed that hydraulic heads calculated by MODFLOW significantly overestimated for confining units and slightly underestimated for aquifer ones. Moreover, it showed that applied stress due to pumping changed initially homogeneous layers to be heterogeneous ones. Comparison of vertical deformations calculated by NDIS andMODFLOW-SUB showed that neglecting horizontal strain and stress-dependency of aquifer parameters can overestimate future subsidence. Furthermore, compared to the SUB (Subsidence and Aquifer-System Compaction) package, NDIS is more likely to provide a more accurate compaction model for a complex aquifer system with vertically variable compression (Cc), recompression (Cr), and hydraulic conductivity change (Ck) indices.  more » « less
Award ID(s):
1832065
NSF-PAR ID:
10168032
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Hydrology
Volume:
6
Issue:
78
ISSN:
2306-5338
Page Range / eLocation ID:
1-17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding subsurface structure and groundwater flow in deltaic aquifers is essential for evaluating the vulnerability of groundwater resources in delta systems. Deltaic aquifers contain coarse‐grained paleochannels that preserve a record of former surface river channels as well as fine‐grained floodplain deposits. The distribution of these deposits and how they are interconnected control groundwater flow and contaminant transport. In this work, we link depositional environments of deltaic aquifers to stratigraphic (static) and flow and transport (dynamic) connectivity metrics. Numerical models of deltaic stratigraphy were generated using a reduced‐complexity numerical model (DeltaRCM) with different input sand fractions (ISF) and rates of sea‐level rise (SLR). The groundwater flow and advective transport behavior of these deltas were simulated using MODFLOW and MODPATH. By comparing the static and dynamic metrics calculated from these numerical models, we show that groundwater behavior can be predicted by particular aspects of the subsurface architecture, and that horizontal and vertical connectivity display different characteristics. We also evaluate relationships between connectivity metrics and two environmental controls on delta evolution: ISF and SLR rate. The results show that geologic setting strongly influences both static and dynamic connectivity in different directions. These results provide insights into quantitatively differentiated subsurface hydraulic behavior between deltas formed under different external forcing (ISF and SLR rate) and they are a potential link in using information from delta surface networks and depositional history to predict vulnerability to aquifer contamination.

     
    more » « less
  2. Abstract

    Many irrigated agricultural areas seek to prolong the lifetime of their groundwater resources by reducing pumping. However, it is unclear how lagged responses, such as reduced groundwater recharge caused by more efficient irrigation, may impact the long‐term effectiveness of conservation initiatives. Here, we use a variably saturated, simplified surrogate groundwater model to: (a) analyze aquifer responses to pumping reductions, (b) quantify time lags between reductions and groundwater level responses, and (c) identify the physical controls on lagged responses. We explore a range of plausible model parameters for an area of the High Plains aquifer (USA) where stakeholder‐driven conservation has slowed groundwater depletion. We identify two types of lagged responses that reduce the long‐term effectiveness of groundwater conservation, recharge‐dominated and lateral‐flow‐dominated, with vertical hydraulic conductivity (KZ) the major controlling variable. When highKZallows percolation to reach the aquifer, more efficient irrigation reduces groundwater recharge. By contrast, when lowKZimpedes vertical flow, short term changes in recharge are negligible, but pumping reductions alter the lateral flow between the groundwater conservation area and the surrounding regions (lateral‐flow‐dominated response). For the modeled area, we found that a pumping reduction of 30% resulted in median usable lifetime extensions of 20 or 25 years, depending on the dominant lagged response mechanism (recharge‐ vs. lateral‐flow‐dominated). These estimates are far shorter than estimates that do not account for lagged responses. Results indicate that conservation‐based pumping reductions can extend aquifer lifetimes, but lagged responses can create a sizable difference between the initially perceived and actual long‐term effectiveness.

     
    more » « less
  3. ABSTRACT The compaction measurements of Quaternary and Tertiary Gulf Coast aquifer system sediments in the Houston-Galveston region (TX) show spatially variable compression of 0.08 to 8.49 mm/yr because of geohistorical overburden pressure when groundwater levels in the aquifer system were stable after about the year 2000. An aquifer-system creep equation is developed for evaluating this variable compression, with a thickness-weighted average creep coefficient based on Taylor's (1942) secondary consolidation theory. The temporal variation of aquifer system creep can be neglected in a short-term observation period (such as a decade) after a long-term creep period (such as over 1,000 years) in geohistory. The creep coefficient of the Gulf Coast aquifer system is found to be in a range of 8.74 × 10−5 to 3.94 × 10−3 (dimensionless), with an average of 1.38 × 10−3. Moreover, for silty clay or clay-dominant aquitards in the Gulf Coast aquifer system the creep coefficient value varies in the range of 2.21 × 10−4 to 3.94 × 10−3, which is consistent with values found by Mesri (1973) for most soils, which vary in the range of creep coefficient, 1 × 10−4 to 5 × 10−3. Land subsidence due to secondary consolidation of the Gulf Coast aquifer system is estimated to be 0.04 to 4.33 m in the 20th century and is projected to be 0.01 to 0.64 m in the 21st century at the 13 borehole extensometer locations in the Houston-Galveston region. The significant creep should be considered in the relative sea level rise, in addition to tectonic subsidence and primary consolidation. 
    more » « less
  4. As much as 3.05 m of land subsidence was observed in 1979 in the Houston-Galveston region as a result primarily of inelastic compaction of aquitards in the Chicot and Evangeline aquifers between 1937 and 1979. The preconsolidation pressure heads for aquitards within these two aquifers were continuously updated in response to lowering groundwater levels, which in turn was caused by continuously increasing groundwater withdrawal rates from 0.57 to 4.28 million m3/day. This land subsidence occurred without any management of changes in groundwater levels. However, the management of recovering groundwater levels from 1979 to 2000 successfully decreased inelastic compaction from about 40 mm/yr in the early 1980s to zero around 2000 through decreasing groundwater withdrawal rates from 4.3 to 3.0 million m3/day. The inelastic consolidation that had existed for about 63 years roughly from 1937 to 2000 caused a land subsidence hazard in this region. Some rebounding of the land surface was achieved from groundwater level recovering management. It is found in this paper that subsidence of 0.08 to 8.49 mm/yr owing to a pseudo-constant secondary consolidation rate emerged or tended to emerge at 13 borehole extensometer station locations while the groundwater levels in the two aquifers were being managed. It is considered to remain stable in trend since 2000. The subsidence due to the secondary consolidation is beyond the control of any groundwater level change management schemes because it is caused by geo-historical overburden pressure on the two aquifers. The compaction measurements collected from the 13 extensometers since 1971 not only successfully corroborate the need for groundwater level change management in controlling land subsidence but also yield the first empirical findings of the occurrence of secondary consolidation subsidence in the Quaternary and Tertiary aquifer systems in the Houston-Galveston region. 
    more » « less
  5. This study attempts to integrate a Surface Water (SW) model Soil and Water Assessment Tool (SWAT) with an existing steady-state, single layer, unconfined heterogeneous aquifer Analytic Element Method (AEM) based Ground Water (GW) model, named Bluebird AEM engine, for a comprehensive assessment of SW and GW resources and its management. The main reason for integrating SWAT with the GW model is that the SWAT model does not simulate the distribution and dynamics of GW levels and recharge rates. To overcome this issue, often the SWAT model is coupled with the numerical GW model (either using MODFLOW or FEFLOW), wherein the spatial and temporal patterns of the interactions are better captured and assessed. However, the major drawback in integrating the two models (SWAT with—MODFLOW/FEM) is its conversion from Hydrological Response Unit’s (HRU)/sub-basins to grid/elements. To couple them, a spatial translation system is necessary to move the inputs and outputs back and forth between the two models due to the difference in discretization. Hence, for effective coupling of SW and GW models, it may be desirable to have both models with a similar spatial discretization and reduce the need for rigorous numerical techniques for solving the PDEs. The objective of this paper is to test the proof of concept of integrating a distributed hydrologic model with an AEM model at the same spatial units, primarily focused on surface water and groundwater interaction with a shallow unconfined aquifer. Analytic Element Method (AEM) based GW models seem to be ideal for coupling with SWAT due to their innate character to consider the HRU, sub-basin, River, and lake boundaries as individual analytic elements directly without the need for any further discretization or modeling units. This study explores the spatio-temporal patterns of groundwater (GW) discharge rates to a river system in a moist-sub humid region with SWAT-AEM applied to the San Jacinto River basin (SJRB) in Texas. The SW-GW interactions are explored throughout the watershed from 2000–2017 using the integrated SWAT-AEM model, which is tested against stream flow and GW levels. The integrated SWAT-AEM model results show good improvement in predicting the stream flow (R2 = 0.65–0.80) and GW levels as compared to the standalone SWAT model. Further, the integrated model predicted the low flows better compared to the standalone SWAT model, thus accounting for the SW-GW interactions. Almost 80% of the stream network experiences an increase in groundwater discharge rate between 2000 and 2017 with an annual average GW discharge rate of 1853 Mm3/year. The result from the study seems promising for potential applications of SWAT-AEM coupling in regions with considerable SW-GW interactions. 
    more » « less