skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adversarial Robustness of AI Agents Acting in Probabilistic Environments
As machine learning systems become more pervasive in safety-critical tasks, it is important to carefully analyze their robustness against attack. Our work focuses on developing an extensible framework for verifying adversarial robustness in machine learning systems over time, leveraging existing methods from probabilistic model checking and optimization. We present preliminary progress and consider future directions for verifying several key properties against sophisticated, dynamic attackers.  more » « less
Award ID(s):
1801546
PAR ID:
10168335
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Workshop on Foundations of Computer Security (FCS) 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As machine learning systems become more pervasive in safety-critical tasks, it is important to carefully analyze their robustness against attack. Our work focuses on developing an extensible framework for verifying adversarial robustness in machine learning systems over time, leveraging existing methods from probabilistic model checking and optimization. We present preliminary progress and consider future directions for verifying several key properties against sophisticated, dynamic attackers. 
    more » « less
  2. The paper extends the recent star reachability method to verify the robustness of recurrent neural networks (RNNs) for use in safety-critical applications. RNNs are a popular machine learning method for various applications, but they are vulnerable to adversarial attacks, where slightly perturbing the input sequence can lead to an unexpected result. Recent notable techniques for verifying RNNs include unrolling, and invariant inference approaches. The first method has scaling issues since unrolling an RNN creates a large feedforward neural network. The second method, using invariant sets, has better scalability but can produce unknown results due to the accumulation of overapproximation errors over time. This paper introduces a complementary verification method for RNNs that is both sound and complete. A relaxation parameter can be used to convert the method into a fast overapproximation method that still provides soundness guarantees. The method is designed to be used with NNV, a tool for verifying deep neural networks and learning-enabled cyber-physical systems. Compared to state-of-the-art methods, the extended exact reachability method is 10 × faster, and the overapproximation method is 100 × to 5000 × faster. 
    more » « less
  3. As machine learning (ML) systems become pervasive, safeguarding their security is critical. However, recently it has been demonstrated that motivated adversaries are able to mislead ML systems by perturbing test data using semantic transformations. While there exists a rich body of research providing provable robustness guarantees for ML models against ℓp norm bounded adversarial perturbations, guarantees against semantic perturbations remain largely underexplored. In this paper, we provide TSS -- a unified framework for certifying ML robustness against general adversarial semantic transformations. First, depending on the properties of each transformation, we divide common transformations into two categories, namely resolvable (e.g., Gaussian blur) and differentially resolvable (e.g., rotation) transformations. For the former, we propose transformation-specific randomized smoothing strategies and obtain strong robustness certification. The latter category covers transformations that involve interpolation errors, and we propose a novel approach based on stratified sampling to certify the robustness. Our framework TSS leverages these certification strategies and combines with consistency-enhanced training to provide rigorous certification of robustness. We conduct extensive experiments on over ten types of challenging semantic transformations and show that TSS significantly outperforms the state of the art. Moreover, to the best of our knowledge, TSS is the first approach that achieves nontrivial certified robustness on the large-scale ImageNet dataset. For instance, our framework achieves 30.4% certified robust accuracy against rotation attack (within ±30∘) on ImageNet. Moreover, to consider a broader range of transformations, we show TSS is also robust against adaptive attacks and unforeseen image corruptions such as CIFAR-10-C and ImageNet-C. 
    more » « less
  4. This manuscript presents the updated version of the Neural Network Verification (NNV) tool. NNV is a formal verification software tool for deep learning models and cyber-physical systems with neural network components. NNV was first introduced as a verification framework for feedforward and convolutional neural networks, as well as for neural network control systems. Since then, numerous works have made significant improvements in the verification of new deep learning models, as well as tackling some of the scalability issues that may arise when verifying complex models. In this new version of NNV, we introduce verification support for multiple deep learning models, including neural ordinary differential equations, semantic segmentation networks and recurrent neural networks, as well as a collection of reachability methods that aim to reduce the computation cost of reachability analysis of complex neural networks. We have also added direct support for standard input verification formats in the community such as VNNLIB (verification properties), and ONNX (neural networks) formats. We present a collection of experiments in which NNV verifies safety and robustness properties of feedforward, convolutional, semantic segmentation and recurrent neural networks, as well as neural ordinary differential equations and neural network control systems. Furthermore, we demonstrate the capabilities of NNV against a commercially available product in a collection of benchmarks from control systems, semantic segmentation, image classification, and time-series data. 
    more » « less
  5. Developers of machine learning applications often apply post-training neural network optimizations, such as quantization and pruning, that approximate a neural network to speed up inference and reduce energy consumption, while maintaining high accuracy and robustness. Despite a recent surge in techniques for the robustness verification of neural networks, a major limitation of almost all state-of-the-art approaches is that the verification needs to be run from scratch every time the network is even slightly modified. Running precise end-to-end verification from scratch for every new network is expensive and impractical in many scenarios that use or compare multiple approximate network versions, and the robustness of all the networks needs to be verified efficiently. We present FANC, the first general technique for transferring proofs between a given network and its multiple approximate versions without compromising verifier precision. To reuse the proofs obtained when verifying the original network, FANC generates a set of templates – connected symbolic shapes at intermediate layers of the original network – that capture the proof of the property to be verified. We present novel algorithms for generating and transforming templates that generalize to a broad range of approximate networks and reduce the verification cost. We present a comprehensive evaluation demonstrating the effectiveness of our approach. We consider a diverse set of networks obtained by applying popular approximation techniques such as quantization and pruning on fully-connected and convolutional architectures and verify their robustness against different adversarial attacks such as adversarial patches, L 0 , rotation and brightening. Our results indicate that FANC can significantly speed up verification with state-of-the-art verifier, DeepZ by up to 4.1x. 
    more » « less