skip to main content


Title: Field-induced resistance peak in a superconducting niobium thin film proximity coupled to a surface reconstructed SrTiO3
Abstract

Oxygen vacancy is known to play an important role for the physical properties in SrTiO3(STO)-based systems. On the surface, rich structural reconstructions had been reported owing to the oxygen vacancies, giving rise to metallic surface states and unusual surface phonon modes. More recently, an intriguing phenomenon of a huge superconducting transition temperature enhancement was discovered in a monolayer FeSe on STO substrate, where the surface reconstructed STO (SR-STO) may play a role. In this work, SR-STO substrates were prepared via thermal annealing in ultra-high vacuum followed by low energy electron diffraction analyses on surface structures. Thin Nb films with different thicknesses (d) were then deposited on the SR-STO. The detailed studies of the magnetotransport and superconducting property in the Al(1 nm)/Nb(d)/SR-STO samples revealed a large positive magnetoresistance and a pronounced resistance peak near the onset of the resistive superconducting transition in the presence of an in-plane field. Remarkably, the amplitude of the resistance peak increases with increasing fields, reaching a value of nearly 57% of the normal state resistance at 9 T. Such resistance peaks were absent in the control samples of Al(1 nm)/Nb(d)/STO and Al(1 nm)/Nb(d)/SiO2. Combining with DFT calculations for SR-STO, we attribute the resistance peak to the interface resistance from the proximity coupling of the superconducting niobium to the field-enhanced long-range magnetic order in SR-STO that arises from the spin-polarized in-gap states due to oxygen vacancies.

 
more » « less
NSF-PAR ID:
10168510
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
5
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Charge transport mechanisms governing DC resistance degradation in ferroelectric films are influenced by defects, particularly oxygen vacancies. This paper demonstrates that oxygen vacancies migrate in lead zirconate titanate (PZT) films under a DC bias field and contribute to resistance degradation. Model PZT thin films were developed in which the concentration and distribution of oxygen vacancies were controlled via (a) changing the dopant type and concentration from 1%–4% Mn (acceptor) to 1%–4% Nb (donor) or (b) annealing undoped PZT films at varying partial pressures of PbO. The presence of associated (immobile) and dissociated (mobile) oxygen vacancies was distinguished by thermally stimulated depolarization current (TSDC) measurements. The impact of mobile oxygen vacancies on local defect chemistry and associated charge transport mechanisms was explored by electron energy loss spectroscopy (EELS). For Mn-doped PZT films, following resistance degradation, TSDC studies revealed only one depolarization peak with an activation energy of 0.6–0.8 eV; this peak was associated with ionic space charge presumably due to migration of oxygen vacancies. The magnitude of the depolarization current peak increased with increasing degradation times. A similar depolarization current peak attributed to the existence of mobile oxygen vacancies was also observed for undoped and Nb-doped PZT films; the magnitude of this peak decreased as the Nb or PbO contents in PZT films increased. An additional TSDC peak associated with polaron hopping between Ti3+ and Ti4+ was found in both Nb-doped PZT films and undoped PZT films annealed under low PbO partial pressure. Degraded Nb-doped samples exhibited a chemical shift in the TiL2,3 peak to lower energy losses and the appearance of shoulders on the t2g and eg peaks, implying a reduction of Ti cations in regions near the cathode. 
    more » « less
  2. Oxygen vacancies ( V O • • ) play a critical role as defects in complex oxides in establishing functionality in systems including memristors, all-oxide electronics, and electrochemical cells that comprise metal-insulator-metal or complex oxide heterostructure configurations. Improving oxide-oxide interfaces necessitates a direct, spatial understanding of vacancy distributions that define electrochemically active regions. We show vacancies deplete over micrometer-level distances in Nb-doped SrTiO 3 (Nb:SrTiO 3 ) substrates due to deposition and post-annealing processes. We convert the surface potential across a strontium titanate/yttria-stabilized zirconia (STO/YSZ) heterostructured film to spatial (<100 nm) vacancy profiles within STO using ( T = 500°C) in situ scanning probes and semiconductor analysis. Oxygen scavenging occurring during pulsed laser deposition reduces Nb:STO substantially, which partially reoxidizes in an oxygen-rich environment upon cooling. These results (i) introduce the means to spatially resolve quantitative vacancy distributions across oxide films and (ii) indicate the mechanisms by which oxide thin films enhance and then deplete vacancies within the underlying substrate. 
    more » « less
  3. Abstract

    Developing cost effective electrocatalysts with high oxygen evolution reaction (OER) activity is essential for large‐scale application of many electrochemical energy systems. Although the impacts of either lattice strain or oxygen defects on the OER performance of oxide catalysts have been extensively investigated, the effects of both factors are normally treated separately. In this work, the coupled effects of both strain and oxygen deficiency on the electrocatalytic activity of La0.7Sr0.3CoO3−δ(LSC) thin films grown on single crystal substrates (LaAlO3 (LAO) and SrTiO3 (STO)) are investigated. Electrochemical tests show that the OER activities of LSC films are higher under compression than under tension, and are diminished as oxygen vacancies are introduced by vacuum annealing. Both experimental and computational results indicate that the LSC films under tension (e.g., LSC/STO) have larger oxygen deficiency than the films under compression (e.g., LSC/LAO), which attribute to smaller oxygen vacancy formation energy. Such strain‐induced excessive oxygen vacancies in the LSC/STO increases theegstate occupancy and enlarges the energy gap between the O 2p and Co 3d band, resulting in lower OER activity. Understanding the critical role of strain–defect coupling is important for achieving the rational design of highly active and durable catalysts for energy devices.

     
    more » « less
  4. The Gejiu alkaline complex (GAC) within the western part of the Youjiang Basin provides a window to investigate the evolution in the junction of Cathaysia, Yangtze and Indochina blocks. Here, we investigate the GAC in terms of their petrology, zircon U–Pb geochronology, whole‐rock geochemistry, and Sr–Nd isotopic data to gain insights into the origin and evolution of the alkaline magma. The GAC is lithologically composed of alkali syenites and feldspathoid syenites, in which some were altered into sericite syenites. Zircon U–Pb dating of the alkali syenites yielded an age of 85.03 ± 0.47 Ma, which is slightly older than the feldspathoid syenites. The alkali syenites and feldspathoid syenites are silica‐saturated and silica‐undersaturated, respectively, and are characterized by high alkalinity with K2O + Na2O of 11.55–17.08 wt% and Al2O3of 18.57–22.49 wt%, low MgO of 0.11–1.39 wt%, weakly negative Eu anomalies, enrichments of LILEs such as Th and U, HFSEs like Zr and Hf but depletion of Ba, Sr, Nb, Ta, P, Ti, strongly fractionated LREEs to HREEs. Their uniform Sr–Nd isotope composition with initial87Sr/86Sr = 0.708802–0.710571 andεNd(t) = −7.1 to −6.6 indicates that they were products of a homologous magma. They crystallized atc. 810–956°C and have a relatively high magmatic oxygen fugacity. Our geochemical and isotopic data proved that the GAC magma was derived from the low‐degree partial melting (<10%) of a phlogopite‐bearing‐enriched mantle that was metasomatized by subducting sediments and originated possibly from the spinel and garnet transition zone at a depth of 60–80 km and a pressure of about 1.8–2.4 Gpa. The primary magma experienced protracted two‐stage crystal fractionation of clinopyroxene+amphibole and biotite+K‐feldspar, forming alkali syenites and feldspathoid syenites. Crustal contamination plays a negligible role in their formation. Considering previous tectonic studies, it was therefore proposed that the GAC formed in an extensional tectonic setting related to the Neo‐Tethyan tectonic regions during the Late Cretaceous.

     
    more » « less
  5. Abstract

    A variety of mechanisms are reported to play critical roles in contributing to the high carrier/electron mobility in oxide/SrTiO3(STO) heterostructures. By using La0.95Sr0.05TiO3(LSTO) epitaxially grown on different single crystal substrates (such as STO, GdScO3, LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and CeO2buffered STO) as the model systems, the formation of a conducting substrate surface layer (CSSL) on STO substrate is shown at relatively low growth temperature and high oxygen pressure (725 °C, 5 × 10–4 Torr), which contributes to the enhanced conductivity of the LSTO/STO heterostructures. Different from the conventional oxygen vacancy model, this work reveals that the formation of the CSSL occurs when growing an oxide layer (LSTO in this case) on STO, while neither annealing nor the growth of an Au layer alone at the exact same growth condition generates the CSSL in STO. It demonstrates that the oxide layer actively pulls oxygen from STO substrate at given growth conditions, leading to the formation of the CSSL. The observations emphasize the oxygen transfer across film/substrate interface during the synthesis of oxide heterostructures playing a critical role in functional properties.

     
    more » « less