- Award ID(s):
- 1831531
- Publication Date:
- NSF-PAR ID:
- 10168649
- Journal Name:
- Microorganisms
- Volume:
- 8
- Issue:
- 2
- Page Range or eLocation-ID:
- 183
- ISSN:
- 2076-2607
- Sponsoring Org:
- National Science Foundation
More Like this
-
Research on the microbiomes of animals has increased substantially within the past decades. More recently, microbial analyses of aquatic invertebrates have become of increased interest. The storage method used while collecting aquatic invertebrates has not been standardized throughout the scientific community, and the effects of common storage methods on the microbial composition of the organism is unknown. Using crayfish and dragonfly nymphs collected from a natural pond and crayfish maintained in an aquarium, the effects of two common storage methods, preserving in 95% ethanol and freezing at −20 °C, on the invertebrate bacterial microbiome was evaluated. We found that the bacterial community was conserved for two sample types (gut and exoskeleton) of field-collected crayfish stored either in ethanol or frozen, as was the gut microbiome of aquarium crayfish. However, there were significant differences between the bacterial communities found on the exoskeleton of aquarium crayfish stored in ethanol compared to those that were frozen. Dragonfly nymphs showed significant differences in gut microbial composition between species, but the microbiome was conserved between storage methods. These results demonstrate that preserving field-collected specimens of aquatic invertebrates in 95% ethanol is likely to be a simple and effective sample preservation method for subsequent gut microbiomemore »
-
Abstract Background The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai’i using three different marker genes (16S rRNA, nif H, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. Results The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix , both brooders, showed a weak relationship between the 16S rRNAmore »
-
Abstract Gut microbiomes encode myriad metabolic functions critical to mammalian ecology and evolution. While fresh fecal samples provide an efficient, noninvasive method of sampling gut microbiomes, collecting fresh feces from elusive species is logistically challenging. Nonfresh feces, however, may not accurately represent the gut microbiome of the host due to succession of gut microbial consortia postdefecation as well as colonization by microbes from the surrounding environment. Using American mink (Neovison vison) as a model species, we examined postdefecation microbial community succession to learn how ambient temperature and temporal sampling constraints influence the reliability of nonfresh feces to represent host gut microbiomes. To achieve our goal, we analyzed fresh mink feces (n = 5 females; n = 5 males) collected at the time of defecation from captive mink at a farm in the Upper Peninsula of Michigan and we subsequently subsampled each fecal specimen to investigate microbial community succession over five days, under both warm (21°C) and cold (–17°C to –1°C) temperature treatments. We found that both temperature and time influenced fecal microbiome composition; and we also detected significant sexual dimorphism in microbial community structures, with female mink microbiomes exhibiting significantly greater variation than males’ when exposed to the warm temperaturemore »
-
The fish gut microbiome is impacted by a number of biological and environmental factors including fish feed formulations. Unlike mammals, vertical microbiome transmission is largely absent in fish and thus little is known about how the gut microbiome is initially colonized during hatchery rearing nor the stability throughout growout stages. Here we investigate how various microbial-rich surfaces from the built environment “BE” and feed influence the development of the mucosal microbiome (gill, skin, and digesta) of an economically important marine fish, yellowtail kingfish, Seriola lalandi , over time. For the first experiment, we sampled gill and skin microbiomes from 36 fish reared in three tank conditions, and demonstrate that the gill is more influenced by the surrounding environment than the skin. In a second experiment, fish mucous (gill, skin, and digesta), the BE (tank side, water, inlet pipe, airstones, and air diffusers) and feed were sampled from indoor reared fish at three ages (43, 137, and 430 dph; n = 12 per age). At 430 dph, 20 additional fish were sampled from an outdoor ocean net pen. A total of 304 samples were processed for 16S rRNA gene sequencing. Gill and skin alpha diversity increased while gut diversity decreased withmore »
-
Microbiomes of the Sydney Rock Oyster are acquired through both vertical and horizontal transmission
Abstract Background The term holobiont is widely accepted to describe animal hosts and their associated microorganisms. The genomes of all that the holobiont encompasses, are termed the hologenome and it has been proposed as a unit of selection in evolution. To demonstrate that natural selection acts on the hologenome, a significant portion of the associated microbial genomes should be transferred between generations. Using the Sydney Rock Oyster (
Saccostrea glomerata ) as a model, we tested if the microbes of this broadcast spawning species could be passed down to the next generation by conducting single parent crosses and tracking the microbiome from parent to offspring and throughout early larval stages using 16S rRNA gene amplicon sequencing. From each cross, we sampled adult tissues (mantle, gill, stomach, gonad, eggs or sperm), larvae (D-veliger, umbo, eyed pediveliger, and spat), and the surrounding environment (water and algae feed) for microbial community analysis.Results We found that each larval stage has a distinct microbiome that is partially influenced by their parental microbiome, particularly the maternal egg microbiome. We also demonstrate the presence of core microbes that are consistent across all families, persist throughout early life stages (from eggs to spat), and are not detected in the microbiomes ofmore »
Conclusion Our study characterized the succession of oyster larvae microbiomes from gametes to spat and tracked selected members that persisted across multiple life stages. Overall our findings suggest that both horizontal and vertical transmission routes are possible for the complex microbial communities associated with a broadcast spawning marine invertebrate. We demonstrate that not all members of oyster-associated microbiomes are governed by the same ecological dynamics, which is critical for determining what constitutes a hologenome.